Пошаговое объяснение:
Для вычисления интеграла воспользуемся сначала методом интегрирования по частям:
Заметим, что , и тогда в интеграле после интегрирования по частям напрашивается такая замена:
Если , то, положив , найдём, что:
Применим это всё при вычислении получившегося интеграла.
Пределы интегрирования изменятся так:
Вычислим теперь сам интеграл:
Введём замену:
Пределы интегрирования изменятся так:
Продолжим вычисление интеграла:
Подставим найденное значение в выражение после интегрирования по частям и найдём итоговый результат:
Наконец, получаем, что
а)
б)
Пошаговое объяснение:
а) Начнём с классификации ДУ. Это ДУ первого порядка, первой степени, линейное, обыкновенное.
В таком случае подойдёт замена Введём её:
Удалось разделить переменные. Проинтегрируем обе части уравнения:
Приравняем и упростим обе части уравнения:
Обратная замена:
Логарифм от существует только тогда, когда Модуль для равен самому , поэтому:
б) Начнём с классификации ДУ. Это ДУ первого порядка, первой степени, линейное, обыкновенное.
Введём переменную и домножим на неё обе части уравнения:
Отметим, что Зная это, упростим:
Удалось разделить переменные. Проинтегрируем обе части уравнения:
Обратим замену, приравняем выражения и упростим:
Поделитесь своими знаниями, ответьте на вопрос:
добрые люди Найдите значение выражения 5x, если х =-3, 5
Пошаговое объяснение:
5x
x=-3.5
5x=
5*(-3.5)=-17.5