Путь (S) = 10 м
Ускорение (а) = 5м/с2
Объяснение:
Покажем на рисунке необходимые величины. Ось X направим по направлению движения. Так как скорость спринтера растёт, то ускорение направлено также по движению (по скорости). Это можно понять, если проанализировать формулу (6) – вектор v будет увеличиваться, если он направлен по вектору a ! Впрочем, если ты не знаешь, куда направить ускорение – ничего страшного – направляй куда-нибудь (в этой задаче, естественно, либо по движению, либо против). Знак ответа даст тебе правильное направление: если получится (+), то ускорение было направлено правильно, ну а если (–), то в другую сторону.
Запишем формулы (6) и (7) в проекции на ось X для данной задачи:
v A=at ; S= at 2
По условию начальная скорость v0=0 , а так как все вектора 2 направлены по оси X, то везде знаки (+). Из первой формулы можно найти ускорение a=vtA =5 м/с2 , подставляя которое во вторую формулу получим перемещение (и путь, так как движение происходит вдоль прямой в одну сторону): S=10м .
а)
б)
в)
г)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите нод и нок чисел: а) 2 в 32 степени * з в 4степени * 11 в 31 степени и 2 в 23 степени * з в 7 степени * 11 в 14 степени ; б) 4 в 24 степени * 6 в 14 степени * 9 в 8 степени и 8 в 18 степени * 10 в 17 степени * 12 в 16 степени .
a) 2 в 32 степени * з в 4степени * 11 в 31 степени и 2 в 23 степени * з в 7 степени * 11 в 14 степени
нод: 2^23 * 3^4 * 11^14
нок: 2^9 * 3^3 * 11^17
б) 4 в 24 степени * 6 в 14 степени * 9 в 8 степени и 8 в 18 степени * 10 в 17 степени * 12 в 16 степени
4 в 24 степени * 6 в 14 степени * 9 в 8 степени = 2^48 * 2^14 * 3^14 * 3^16 = 2^62 * 3^30
8 в 18 степени * 10 в 17 степени * 12 в 16 степени = 2^54 * 2^17 * 5^17 * 3^16 * 2^32 = 2^103 * 3^16 * 5^17
нод: 2^54 * 3^16
нок: 2^8 * 3^14 * 5^17