1. Найдем сумму и произведение корней квадратного уравнения:
x1 = 1 - √2;
x2 = 1 + √2;
x1 + x2 = (1 - √2) + (1 + √2) = 1 - √2 + 1 + √2 = 2;
x1x2 = (1 - √2)(1 + √2) = 1^2 - (√2)^2 = 1 - 2 = -1.
2. По теореме Виета, произведение двух корней приведенного квадратного уравнения равно свободному члену, а сумма корней - второму коэффициенту с обратным знаком:
x1 * x2 = c; (1)
x1 + x2 = -b. (2)
3. С уравнений (1) и (2) найдем значения b и c и составим квадратное уравнение:
b = -(x1 + x2) = -2;
c = x1 * x2 = -1;
x^2 - 2x - 1 = 0.
ответ: x^2 - 2x - 1 = 0.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение 3, 8-y/5, 5=3, 6-y/11