составлю сначала формулу расчёта среднего арифметического:
(a + 4) / 2. думаю, что по этой формуле вопросов не будет.
составлю теперь формулу среднего или иначе среднего пропорционального этих чисел.
√4a = 2√a
и приравняю их, решим таким образом обычное иррациональное уравнение.
(a+4)/2 = 2√a
я рекомендую решать уравнения такого типа путём последовательного возведения обеих его частей в квадрат, но прежде домножу обе части уравнения на 2, чтобы избавиться от знаменателя дроби в левой части.
a+4 = 4√a
теперь выполню возведение обеих частей в квадрат.
(a+4)² = 16a
и далее имеем:
a² + 8a + 16 = 16a
a²- 8a + 16 = 0
по теореме виета нахожу корни:
a1 = 4; a2 = 4
то есть, a = 4. при этом значении соблюдается вышеуказанное равенство.
Дана функция у= х²- 2х - 3.
График её - парабола ветвями вверх.
Находим её вершину: хо = -в/2а = 2/(2*1) = 1.
уо = 1 - 2 - 3 = -4.
В точке (1; -4) находится минимум функции.
а) промежутки возрастания и убывания функции:
убывает х ∈ (-∞; 1),
возрастает х ∈ (1; +∞).
б) наименьшее значение функции: в точке (1; -4) находится минимум функции уmin = -4.
в) при каких значениях х у > 0.
Для этого надо найти точки пересечения графиком оси Ох
(при этом у = 0).
х²- 2х - 3 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
Функция (то есть у) больше 0 при х ∈ (-∞; -1) ∪ (3; +∞)
Объяснение:
Удачи тебе
Поделитесь своими знаниями, ответьте на вопрос:
Найдите sin/alpha, если известно, что cos/alpha=альфа больше пи и -3/5 но меньше 3пи/2