ответ: потому что уравнение x²-5*x+36 не имеет действительных корней.
Объяснение:
Если уравнение a*x²+b*x+c=0 имеет действительные корни x1 и x2, то a*x²+b*x+c=a*(x-x1)*(x-x2), то есть в этом случае квадратный трёхчлен a*x²+b*x+c можно представить в виде произведения двух многочленов первой степени x-x1 и x-x2. В нашем же случае уравнение x²-5*x+36=0 имеет отрицательный дискриминант D=(-5)²-4*1*36=-119, поэтому это уравнение не имеет действительных корней. А значит, данный квадратный трёхчлен нельзя представить в виде произведения многочленов первой степени.
3n - 4, 4n - 5, 5n - 3 - простые n ∈ N
простые 2, 3, 5, 7, 11, 13
одно четное простое число 2
n ≥ 2 ( 3n - 4 < 0 при n = 1)
пусть n - нечетное, тогда
(3*нечетное - 4) - нечетное
(4*нечетное - 5) - нечетное
(5*нечетное - 3) - четное
5n - 3 = 2
5n = 5
n = 1
но такого не может быть n ≥ 2
пусть n - четное, тогда
(3*четное - 4) - четное
(4*четное - 5) - нечетное
(5*четное - 3) - нечетное
3n - 4 = 2
3n = 6
n = 2
подходит, но надо проверить два оставшихся
4n - 5 = 4*2 - 5 = 3 простое
5n - 3 = 5*2 - 3 = 7 простое
3n - 4 = 3*2 - 4 = 2 простое
да только при n = 2 числа простые
Поделитесь своими знаниями, ответьте на вопрос: