Больше или равно: > =34-26 x > = 6(3-4x)+ 8 34 - 26x > = 18 - 24x + 8 -2x > = -8 x< = 4
Андрееевич787
27.03.2021
34-26х больше или равно 18-24х+8 34-26х больше или равно 36- 24х больше
Prokopeva1062
27.03.2021
Дана функция: y = -x^4 + 2x^2 + 3при построении графиков функций можно примерно придерживаться следующего плана: 1. найти область определения функции и область значений функции, выявить точки разрыва, если они есть. ограничений нет: функция определена и непрерывна на всей числовой прямой, отсутствуют вертикальные асимптоты и точки разрыва функции. область значений определится после нахождения экстремумов. 2. выяснить, является ли функция четной или нечетной. проверим функцию - четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(-x). так как переменная в чётных степенях, то функция чётная. 3. выяснить, является ли функция периодической - нет. 4. найти точки пересечения графика с осями координат (нули функции). точка пересечения графика функции с осью координат оу: график пересекает ось y, когда x равняется 0: подставляем x=0 в -x^4+2x^2+3. у =-0^4+2*0^2+3 = 3, результат: y=3. точка: (0; 3). точки пересечения графика функции с осью координат ох: график функции пересекает ось x при y=0, значит, нам надо решить уравнение: -x^4+2x^2+3 = 0. делаем замену х^2 = t и получаем квадратное уравнение: -t^2+2t+3 = 0. квадратное уравнение, решаем относительно t: ищем дискриминант: d=2^2-4*(-1)*3=4-4*(-1)*3=)*3=*3)=)=4+12=16; дискриминант больше 0, уравнение имеет 2 корня: t_1=(√16-2)/(2*(-1))=(4-2)/(2*(-1))=2/(2*(-1))=2/(-2)=-2/2=-1; t_2=(-√16-2)/(2*(-1))=(-4-2)/(2*(-1))=-6/(2*(-1))=-6/(-2)=/2)=)=3. первый корень отбрасываем, так как квадрат х не может быть отрицательным числом. находим 2 точки пересечения графика с осью ох: х = √3 и х = -√3. 5. найти асимптоты графика - их нет, так как все пределы при х⇒∞ равны ∞. 6. вычислить производную функции f'(x) и определить критические точки. y' = 4x³ + 4x = -4x(x² - 1). приравниваем нулю: -4x(x² - 1) = 0. получаем 3 критические точки: х = 0, х = 1 и х = -1. 7. найти промежутки монотонности функции. получили 4 промежутка: (-∞; -1), (-1; 0), (0; 1) и (1; +∞). 8. определить экстремумы функции f(x). где производная положительна - функция возрастает, где отрицательна - там убывает. точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума. x = -2 -1 -0,5 0 0,5 1 2 y' = 24 0 -1,5 0 1,5 0 -24.имеем: 2 максимума: (-1; 4) и (1; 4) и локальный минимум (0; 3). 4 промежутка монотонности: - возрастание (-∞; -1) и (0; 1), - убывание (-1; 0) и (1; +∞).теперь определилась область значений функции: (-∞; 3].9. вычислить вторую производную f''(x) = -12x^2+ 4. приравниваем нулю: -12x^2+ 4 = -12(x^2- (1/3)) = 0. имеем 2 точки перегиба: х = 1/√3 и -1/√3. 10. определить направление выпуклости графика и точки перегиба. где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый. x = -1 -0,57735 0 0,57735 1 y'' = -8 0 4 0 -8.график выпуклый на промежутках (-∞; (-1/√3)) и ((1/√3); +∞), вогнутый на промежутке (-1/√3) (1/√. построить график, используя полученные результаты исследования. дан в приложении.
svetegal
27.03.2021
1. d = b^ 2 – 4ac ; d = 16-4*8*0,5=16-16=0 x 1 = (–b+√ d)/2a , x 2 = –(b−√ d)/2a x1,2 = (4-0)/2*8=4/16=1/4=0,25 2. d=16-4*8*0,5=16-16=0 x 1 = (–b+√ d)/2a , x 2 = –(b−√ d)/2a x1,2 = (4-0)/2*8=4/16=1/4=0,253. 5x^2+10x-20=0 d=100-400=-300 дискриминант меньше нуля - уравнение не имеет действительных корней. 4. 3x*(x+2)=153x^2+6x-15=0 d=36+180=216 x 1 = (–b+√ d)/2a , x 2 = –(b−√ d)/2a x1= (-6+√ 216)/(2*3)=(-6+6√ 6)/6=-1+ √ 6x2= (-6-√ 216)/(2*3)=(-6-6√ 6)/6=-1- √ 6
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
34-26 x больше или равно 6(3-4x)+8 решит неравенство.