s=20*30=600кв.см площадь треугольника
s=3*3=9 cм.кв площадь квадрата
4*9=36см.кв площдь 4-ех квадратов
600-36=564см.кв площадь оставшейся части
Пусть по плану требовалось x машин с грузоподъемностью (60/x) тонн каждая.
В связи с ремонтом взяли (x+1) машину с грузоподъемностью 60/(x+1) тонн каждая.
Так как в каждую машину стали загружать на 3 тонны меньше,
составим уравнение:
60/x - 60/(x+1) = 3
ОДЗ:
x(x+1) от сюда следует, что
x ≠ 0 ; x ≠ - 1
60(x+1) - 60x = 3 *x(x+1)
60x + 60 - 60x = 3x² + 3x
60 = 3x² + 3x
3x² + 3x - 60 = 0 |÷3
x² + x - 20 = 0
D(дискриминант) = 1² - 4*1*(-20) = 1 + 80 = 81 = 9²
x₁ = (-1 - 9)/(2*1) = -10/2 = -5 не удовл. условию задачи
x₂ = (-1 +9)/(2*1) = 8/2 = 4 машины - требовалось по плану
4 + 1 = 5 машин - использовали на самом деле.
60: 4 = 15 тонн - грузоподъемность по плану.
1. Вначале требовалось 4 машины .
2. На самом деле использовали 5 машин.
3. Планировалось перевозить 15 тонн груза на одной машине
Скорость первого катера:
v₁ = 60/t
Скорость второго катера:
v₂ = 60/(t+1)
Скорость сближения катеров:
v = v₁+v₂ = 60/t + 60/(t+1) =
= 60(t+1)+60t)/(t(t+1)) = (120t+60)/(t²+t)
По условию: v = S/t' = 50:1 = 50 (км/ч)
Тогда:
120t + 60 = 50t² + 50t
50t² - 70t - 60 = 0
5t² - 7t - 6 = 0 D = b²-4ac = 49+120 = 169
t₁ = (-b+√D)/2a = 2 (ч)
t₂ = (-b-√D)/2a = -0,6 (ч) - не удовлетворяет условию
Тогда скорость первого катера:
v₁ = 60/t = 60:2 = 30 (км/ч)
Скорость второго катера:
v₂ = 60/(t+1) = 60:3 = 20 (км/ч)
ответ: 30 км/ч; 20 км/ч.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
:из прямоугольного листа железа со сторонами 20 см и 30 см вырезали по углам 4 одинаковых квадрата со сторонами 3 см . чему равен периметр оставшейся части
перимет прямоугольника со сторонами 20 и 30 равен=2*(20+30)=100 см
после того, как вырезали квадраты,периметр оставшейся фигуры не изменился.докажем это
p=2*((20-3*2)+(30-3*2))+8*3=2*(14+24)+24=100