Пусть стороны прямоугольника равны х см и у см. Зная, что его диагональ равна 13 см и используя теорему Пифагора, составляем первое уравнение:
х²+у²=169
Зная, что периметр прямоугольника равен 34 см (соответственно, полупериметр равен 17 см), составляем второе уравнение:
х+у=17
Получили систему уравнений:
{х²+у²=169,
{х+у=17
Выражаем из второго уравнения х через у (х=17-у) и подставляем это значение х в первое уравнение:
(17-у)²+у²=169
289-34у+у²+у²-169=0
2у²-34у+120=0
Делим все на 2.
у²-17у+60=0
По теореме Виета:
у₁+у₂=17
у₁у₂=60
у₁=5
у₂=12
Находим х.
х₁=17-5=12
х₂17-12=5
ответ. 5 см и 12 см стороны прямоугольника.
Объяснение:
1. Графический решения системы уравнений смотри в приложении подстановки.
{3x - y = 7 ⇒ у = 3х - 7
{2x + 3y = 1
2х + 3(3х - 7) = 1
2х + 9х - 21 = 1
11х = 1 + 21
11х = 22
х = 22 : 11
х = 2
у = 3 * 2 - 7 = 6 - 7
у = - 1
ответ сложения.
{3x - y = 7 | * 3
{2x + 3y = 1
{9x - 3y = 21
{2x + 3y = 1
(9x - 3y) + (2x + 3y) = 21 + 1
(9x + 2x) + ( - 3y + 3y) = 22
11x = 22
x = 22 : 11
х = 2
3 * 2 - у = 7
6 - у = 7
-у = 7 - 6
-у = 1
у = - 1
ответ : ( 2 ; - 1) .
Детальніше - на -
Поделитесь своими знаниями, ответьте на вопрос:
Решить систему уравнений. 5^x*0.2^-y=5 (3^x)^y=1/9