Vladimirovich58
?>

Примеры функций: ограниченных сверху; ограниченных снизу

Алгебра

Ответы

Goldaram84
От -бесконечности до 0 сверху от 0 до +бесконечности снизу
Avshirokova51

\displaystyle \int_{\pi\over2}^{3\pi\over2}\cos{x\over3}\mathrm{dx}=3\int_{\pi\over2}^{3\pi\over2} \cos{x\over3}\mathrm{d\left({x\over3}\right)}=3\sin{x\over3}\bigg|_{\pi\over2}^{3\pi\over2}=3\left(\sin{\pi\over2}-\sin{\pi\over6}\right)={3\over2} 3\int_{\pi\over6}^{\pi\over3}{\mathrm{dx}\over\sin^2{(2x)}}={3\over2}\int_{\pi\over6}^{\pi\over3}{\mathrm{d(2x)}\over\sin^2{(2x)}}=-{3\over2}ctg{(2x)}\bigg|_{\pi\over6}^{\pi\over3}=-{3\over2}\left(ctg{2\pi\over3}-ctg{\pi\over3}\right)=\sqrt{3} \int_{-{1}}^{1}{\mathrm{dx}\over3-2x}=-{1\over2}\int_{-{1}}^{1}{\mathrm{d(3-2x)}\over3-2x}=-{1\over2}\ln{|3-2x|}\bigg|_{-{1}}^{1}=-{1\over2}(\ln{1}-\ln{5})={\ln{5}\over2} \int_{0}^{2\pi}\left(\sin{x\over6}+\cos{(5x)}\right)\mathrm{dx}=6\int_{0}^{2\pi}\sin{x\over6}\mathrm{d{x\over6}}+{1\over5}\int_{0}^{2\pi}\cos{(5x)}\mathrm{d(5x)}=(-6\cos{x\over6}+{1\over5}\sin{(5x)})|_{0}^{2\pi}=3+0=3

Monstr13

ответ:

объяснение:

понизим порядок дифференциального уравнения с замены y' = z, тогда y'' = z', получаем

z'{\rm tg}\, x-z+\dfrac{1}{\sin x}=0~~~~~|\cdot {\rm ctg}\, x

z'-z{\rm ctg}\, x=-{\rm ctg}\, x\cdot \dfrac{1}{\sin x}

умножив левую и правую части уравнения на \mu(x)=e^{\int -{\rm ctg}\, x dx}=\dfrac{1}{\sin x}, мы получим

\dfrac{1}{\sin x}z'-{\rm ctg}\, x\cdot \dfrac{1}{\sin x}z=-{\rm ctg}\, x\cdot \dfrac{1}{\sin^2 x}\\ \\ \dfrac{1}{\sin x}\cdot\dfrac{dz}{dx}-\dfrac{d}{dx}\left(\dfrac{1}{\sin x}\right)\cdot z=-{\rm ctg}\, x\cdot \dfrac{1}{\sin^2 x}\\ \\ \dfrac{d}{dx}\left(\dfrac{z}{\sin x}\right)=-{\rm ctg}\, x\cdot \dfrac{1}{\sin^2 x}

проинтегрируем обе части уравнения

\displaystyle \dfrac{z}{\sin x}=\int {\rm ctg}\, xd\left({\rm ctg}\, x\right)=\dfrac{{\rm ctg}^2x}{2}+c_1\\ \\ z=\dfrac{\cos^2x}{2\sin x}+c_1\sin x\\ \\ y=\int \left(\dfrac{\cos^2x}{2\sin x}+c_1\sin x\right)dx=\dfrac{\cos x}{2}-\dfrac{1}{2}\ln\bigg|\dfrac{\cos \frac{x}{2}}{\sin \frac{x}{2}}\bigg|-c_1\cos x+c_2

или это сводится к y=-\dfrac{1}{2}\ln\bigg|\dfrac{\cos \frac{x}{2}}{\sin \frac{x}{2}}\bigg|+c_1\cos x+c_2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Примеры функций: ограниченных сверху; ограниченных снизу
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

avdeevo
sgritsaev
Usynin-nikolay
prettymarina2015
knyazev527
Aleksandr556
vikapar2646
Versalmoda
mustaevdmitry397
dpodstrel85
Наталья Юрьевич1228
solonataly5
nelli-bi6
Андрей_Станиславовна
horizma609