anaissite6
?>

Решите систему уравнений х+у=4 х^2-у^2=8 (нужно подробное решение)

Алгебра

Ответы

Vello Olga

3x^{2} - x^{3} - a = 0

3x^{2} - x^{3} = a

Рассмотрим две функции: f(x) = 3x^{2} - x^{3} и g(x) = a

Изобразим на координатной плоскости график функции f(x)

1) \ D(f) = (-\infty; \ +\infty)

2) \ f(-x) = 3(-x)^{2} - (-x)^{3} = 3x^{2} + x^{3} = -(-3x^{2} - x^{3})

Функция f(x) не обладает свойством четности.

3) Находим абсциссы точек пересечения графика с осью Ox:

3x^{2} - x^{3} = 0

x^{2}(3 - x) = 0

\displaystyle \left [ {{x^{2} = 0 \ \ \ \ } \atop {3 - x = 0}} \right. ~~~~~~ \left [ {{x_{1} = 0} \atop {x_{2} = 3}} \right.

Находим ординату точки пересечения графика с осью Oy:

f(0) = 3 \cdot 0^{2} - 0^{3} = 0

4) Находим производную:

f'(x) = (3x^{2} - x^{3})' = 6x - 3x^{2}

Критические точки:

6x - 3x^{2} = 0

3x(2 - x) = 0

\displaystyle \left [ {{3x = 0 \ \ \ \, } \atop {2 - x = 0}} \right. ~~~~ \left [ {{x_{1} = 0} \atop {x_{2} = 2}} \right.

5) Составим таблицу (см. вложение).

6) \ \displaystyle \lim_{x \to +\infty} (3x^{2} - x^{3}) = +\infty

\displaystyle \lim_{x \to -\infty} (3x^{2} - x^{3}) = -\infty

7) Используя результаты исследования, построим схематический график функции f(x) = 3x^{2} - x^{3} (см. вложение).

Тогда уравнение 3x^{2} - x^{3} - a = 0 будет иметь единственное решение, если графики функций f(x) и g(x) будут иметь единственное пересечение.

Так произойдет, если a \in (-\infty; \ 0) и a \in (4; \ +\infty)

ответ: a \in (-\infty; \ 0) \cup (4; \ +\infty)


При каких значениях а уравнение 3х^2-х^3-а=0 имеет один корень?
При каких значениях а уравнение 3х^2-х^3-а=0 имеет один корень?
d892644813661946

3. (28-7x)^{2020}(18-4x)\leqslant 0

Заметим, что так как 2020 - четное число, то (28-7x)^{2020}\geq 0 (число в четной степени всегда \geq 0). Поэтому первый множитель на знак левой части влиять не будет и его можно опустить. При этом стоит учесть, так это то, что если (28-7x)^{2020}=0\Rightarrow 28-7x=0\Rightarrow x=4, то имеем : 0\leq 0, а это верно. Поэтому нужно запомнить , что x = 4 - решение.

Если x\neq 4, то первый множитель положителен и на него можно поделить обе части, сохранив знак. Итого:

18-4x\leqslant 0\Rightarrow 4x \geqslant 18\Rightarrow x\geqslant \frac{18}{4};\\\\ x\geqslant 4.5

Решение неравенства - x = 4 и все x\geqslant 4.5. Наименьшие целые решения - 4, 5 и 6. Их произведение равно 120.

ОТВЕТ: 1) 120.

4. Область определения - все числа, которые можно подставить вместо x.

Под каждым из корней должно быть неотрицательное число, а знаменатель дроби должен быть отличен от 0. Область определения - все числа, удовлетворяющие системе из четырех неравенств \left\{\begin{matrix}2 - x\geqslant 0 & & \\ 6-x^2-x\geqslant 0& & \\7x+25\geqslant 0\\x+x^2\neq0\end{matrix}\right..

Из первого неравенства следует, что x\leqslant 2.

Решим второе неравенство: оно равносильно неравенству x^2+x-6\leqslant 0\Rightarrow (x+2)(x-3)\leqslant 0 . Решением данного неравенство является отрезок [-2; 3].

Третье неравенство: 7x\geqslant -25\Rightarrow x\geqslant -\frac{25}{7}=-3\frac{4}{7}.

Четвертое: x(1+x)\neq 0\Rightarrow \left \{ {{x\neq0 } \atop {x+1\neq0 }} \right. \Rightarrow x\neq -1; 0

Так как у нас была система, ищем пересечение множеств решений всех 4 неравенств: x\in[-3;-1)\cup(-1;0)\cup(0;2].

Все целые числа, принадлежащие области определения: -3; -2; 1; 2 (-1 и 0 выпадают, т.к. скобки круглые). Их сумма равна -2.

ОТВЕТ: 2) -2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите систему уравнений х+у=4 х^2-у^2=8 (нужно подробное решение)
Ваше имя (никнейм)*
Email*
Комментарий*