x^4 + 2x^3 - 7x^2 - 4x + 12 = 0
Можно решить по схеме Горнера.
Обозначим левую часть как y(x) = x^4 + 2x^3 - 7x^2 - 4x + 12
Если уравнение имеет рациональный корень x = m/n, то
m = делитель свободного члена (12), n - делитель старшего члена (1).
Возможные корни: x = +-1; +-2; +-3; +-4; +-6; +-12
y(-4) = 256 - 2*64 - 7*16 + 4*4 + 12 = 256 - 128 - 112 + 16 + 12 = 44 > 0
y(-3) = 81 - 2*27 - 7*9 + 4*3 + 12 = 81 - 54 - 63 + 12 + 12 = -12 < 0
x1 ∈ (-4; -3) - иррациональный
y(-2) = 16 - 2*8 - 7*4 + 4*2 + 12 = 16 - 16 - 28 + 8 + 12 = -8 < 0
y(-1) = 1 - 2 - 7 + 4 + 12 = 8 > 0
x2 ∈ (-2; -1) - иррациональный
y(1) = 1 + 2 - 7 - 4 + 12 = 4 > 0
y(2) = 16 + 2*8 - 7*4 - 4*2 + 12 = 16 + 16 - 28 - 8 + 12 = 8 > 0
Все остальные значения будут положительными, значит корней всего 2.
Можно уточнить корни:
y(-3,4) = (3,4)^4 - 2(3,4)^3 - 7(3,4)^2 + 4*3,4 + 12 = -0,2944 ≈ 0
x1 ≈ -3,4
y(-1,5) = (1,5)^4 - 2(1,5)^3 - 7(1,5)^2 + 4*1,5 + 12 = 0,5625 > 0
y(-1,6) = (1,6)^4 - 2(1,6)^3 - 7(1,6)^2 + 4*1,6 + 12 = -1,1584 < 0
x2 ≈ -1,5
Вольфрам Альфа показывает, что x1 = -3,4066; x2 = -1,5329
Объяснение:
отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
По условию четыре данные прямые параллельны, отсекают на прямой ЕН отрезки, равные длине отрезка ЕF, т.е. 6 см.
Значит, ЕН=3•6=18 см
CD=CB=AB=4, и AD=3•4=12 см
Проведем параллельно AD прямую ЕМ, пересекающую параллельные прямые СF и BG в точках Т и К соответственно.
СТ=ВК=АМ=DE=51 см.
ТF=CF-51=57-51=6 см,
Соответственные углы при пересечении параллельных прямых секущими равны (свойство), ⇒
∆ ТЕF, ∆ KEG и ∆ МЕН подобны;
TF - средняя линия ∆ КЕG ⇒ KG=2•TF=12 см
BG=51+12=63 см
КT=КМ=ТЕ=4
У подобных ∆ ТЕF и ∆ МEН k=EH:EF=18:6=3⇒
MH=6•3=18 см
Итак, АD=3•4=12 см,
EH=18 см
DE=51; CF=57 см
AH=51+18=69 см
Нужно металлических прутьев
12+18+57+63+69+51=30+120+120=270 cм =2,7 м
Мастер хорошо знает геометрию и применяет ее в своей работе.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Надо, с решением ! в уравнении x^2 + 11x+c=0 один из его корней равен -3. найдите другой корень и коэффициент с.