Задать вопрос
Войти
АнонимМатематика09 ноября 14:55
Решите систему уравнений методом алгебраического сложения 2x^2+3y^2=14. -x^2+2y^2=7
ответ или решение1
Харитонова Светлана
Решим заданную систему уравнений методом алгебраического сложения:
2х^2 + 3у^2 = 14;
-х^2 + 2у^2 = 7.
1. Умножим второе уравнение на 2:
2х^2 + 3у^2 = 14;
-2х^2 + 4у^2 = 14.
2. Выполним прибавление первого и второго уравнения:
2х^2 - 2х^2 + 3у^2 + 4у^2 = 14 + 14;
7у^2 = 28;
у^2 = 28 : 7;
у^2 = 4;
у1 = 2;
у2 = -2.
3. Подставим значение у в первое уравнение и найдем значение х:
2х^2 + 3 * 2^2 = 14;
2х^2 + 3 * 4 = 14;
2х^2 + 12 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 2 : 2;
х^2 = 1;
х1 = 1;
х2 = -1.
2х^2 + 3 * (-2)^2 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 1;
х1 = 1;
х2 = -1.
y=-x^2-4x - графиком функции является парабола, ветви направлены вниз
m=-b/2a = 4/2 = -2
y=-(-2)^2+4*2=4
(-2;4) - координаты вершины параболы
y=4+x - прямая, проходящая через точки (0;4), (-4;0)
Знайдемо обмежені лінії
\begin{gathered}-x^2-4x=4+x\\ x^2+5x+4=0\end{gathered}−x2−4x=4+xx2+5x+4=0
За т. Вієта: x_1=-1;\,\,\,\, x_2=-4x1=−1;x2=−4
Знайдемо площу фігури
\begin{gathered}\displaystyle \int\limits^{-1}_{-4} {(-x^2-4x-(4+x))} \, dx = \int\limits^{-1}_{-4} {(-x^2-5x-4)} \, dx =\\ \\ \\ =\bigg(- \frac{x^3}{3} - \frac{5x^2}{2}-4x\bigg)\bigg|^{-1}_{-4}= \frac{1}{3} - \frac{5}{2} +4- \frac{4^3}{3} + \frac{5\cdot4^2}{2} -16=4.5\end{gathered}−4∫−1(−x2−4x−(4+x))dx=−4∫−1(−x2−5x−4)dx==(−3x3−25x2−4x)∣∣∣∣∣−4−1=31−25+4−343+25⋅42−16=4.5
Объяснение:
Это
Поделитесь своими знаниями, ответьте на вопрос:
Раскройте скобки: а)(3x+1)в квадрате; б)(x-y в кубе) в квадрате