вероятностью события
при проведении некоторого испытания называют отношение числа тех исходов
, в результате которых наступает событие
, к общему числу
всех (равновозможных между собой) исходов этого испытания.
случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти.
пусть - событие, состоящее в том, что из урны, где находится 25 желтых, 15 синих, 10 красных шаров, можно наудачу взять три красных шара.
из 10 красных шаров нужно выбрать 3 (порядок не имеет значения) - это способов.
выбрать 3 шара из (порядок не имеет значения) можно
способами.
следовательно, согласно определению вероятности, вероятность того, что наудачу взятые три шара окажутся красными, будет составлять .
ответ: .
решить систему уравнений и выделить общее решение соответствующей однородной системы и частное решение неоднородной.
решение. выпишем расширенную матрицу системы и будем выполнять элементарные преобразования строк данной матрицы.
вычислим ранг данной матрицы: где
- число неизвестных. система имеет нетривиальные решения. базисный минор
ставим в соответствие расширенной матрице систему:
где - базисные переменные,
- свободные переменные.
положив значения свободных переменных равными нулю, получим частное решение неоднородной системы:
общее решение:
ответ: - общее решение;
- частное решение.
Поделитесь своими знаниями, ответьте на вопрос:
√853 какие извыражений можно разложить на множители , применив формулу разности квадратов: а) а²-9; г) 49-р²; ж)6а²-б²; б) by+ 1; д)25+х²; з)16х-у²; b) 4-y²; е)1- с²; и)х²у²-4? разложите на множетели (854-855) √854 а)х²-у²; д)х²-1; б)у²-х²; е)1-а²; в)а²-9; ж)а²-0, 01; г)16-b²; з)4 дробь 9 - х². √855 а)9х²-у²; д)16m²-9n²; б)4а²-25 ; е)25x²-y²; в) 16-49у²; ж)4x²-1; г) 9а²-4б²; з)1-36a²;