y= -x² + 4x - 3
Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.
а)найти координаты вершины параболы:
х₀ = -b/2a = -4/-2 = 2
y₀ = -(2)²+4*2-3 = -4+8-3 = 1
Координаты вершины (2; 1)
б)Ось симметрии = -b/2a X = -4/-2 = 2
в)найти точки пересечения параболы с осью Х, нули функции:
y= -x²+ 4x - 3
-x²+ 4x - 3=0
x²- 4x + 3=0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16-12)/2
х₁,₂ = (4±√4)/2
х₁,₂ = (4±2)/2
х₁ = 1
х₂ = 3
Координаты нулей функции (1; 0) (3; 0)
г)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: у= -0+0-3=-3
Также такой точкой является свободный член уравнения c, = -3
Координата точки пересечения (0; -3)
д)для построения графика нужно найти ещё несколько
дополнительных точек:
х=-1 у= -8 (-1; -8)
х= 0 у= -3 (0; -3)
х=4 у= -3 (4;-3)
х= 5 у= -8 (5;-8)
Координаты вершины параболы (2; 1)
Координаты точек пересечения параболы с осью Х: (1; 0) (3; 0)
Координаты дополнительных точек: (-1; -8) (0; -3) (4;-3) (5;-8)
e)В первой, третьей и четвёртой четвертях.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
4cos^2x-8cosx+3=0 , с дискриминантом запуталась сильно.
{x^2+y^2=9 => x^2+y^2-3^2=0 => √(x^2+y^2-3^2)=0 => x+y=3 => y=3-x
{3-xy=0 => (3-x)*x=3 => -x^2+3x=3 => -x^2+3x-3=0
D=3^2-4*(-1)*(-3)=-3
Система уравнений не имеет корней - не имеет решений.
Прилагаю график. {f(x)=3-x
{f(x)=3/x - (это - если преобразовать 2-е уравнение:
3-ху=0 => y=3/x
Объяснение:
вообщем вот могу ошибиьься