Координаты точки пересечения прямых (1; -1)
Решение системы уравнений х=1
у= -1
Объяснение:
Графически определи корни системы уравнений.
y−1= −2x
−x+y=−2
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
y−1= −2x −x+y=−2
у= -2х+1 у= -2+х
Таблицы:
х -1 0 1 х -1 0 1
у 3 1 -1 у -3 -2 -1
Согласно графика, координаты точки пересечения прямых (1; -1)
Решение системы уравнений х=1
у= -1
Поделитесь своими знаниями, ответьте на вопрос:
x^2 + 14x + 33 = 0
Объяснение:
Первый Если x1 и x2 - корни уравнения, то уравнение имеет вид a(x - x1)(x - x2) = 0, где a - старший коэффициент уравнения
Составляем уравнение:
1*(x - (-3))(x - (-11)) = (x + 3)(x + 11) = x^2 + 3x + 11x +3*11 = x^2 + 14x + 33 = 0
Второй По обратной теореме Виета, которая говорит, что если x1 и x2 корни приведенного квадратного уравнения x^2+p·x+q=0, то справедливы соотношения x1+x2=−p, x1·x2=q, найдём коэффициенты уравнения:
-3 + (-11) = -14 = -p, => p = 14
-3*(-11) = 33 = q
Уравнение: x^2 + 14x + 33 = 0