Знайдіть усі значення параметра а при яких AX-3=√-x^2+18x-72 має єдиний розв'язок
Найдите все значения параметра а при котором
имеет единственное решение
ОДЗ уравнения ax-3>0
Возведем обе части уравнения в квадрат
a²х² + 9 - 6ax = -x² + 18x - 72
(a² + 1)x² - (6a + 18)x + 81 = 0
D = (6a + 18)² - 4*81(a² + 1) = 36a² + 216a + 324 - 324a²- 324 = -288a² +216a = -a(288a-216)
Квадратичное уравнение имеет единственное решение при условии что дискриминант равен 0
a(288a - 216) = 0
a₁ = 0 Не входит в ОДЗ так как при а=0 ax - 3 = -3<0
a₂ = -216/288 = 0,75 Входит в ОДЗ
ответ: 0,75
Рішення:
ОДЗ рівняння ax-3> 0
Зведемо обидві частини рівняння в квадрат
a²х² + 9 - 6ax = -x² + 18x - 72
(a² + 1) x² - (6a + 18) x + 81 = 0
D = (6a + 18) ² - 4 * 81 (a² + 1) = 36a² + 216a + 324 - 324a²- 324 = -288a² + 216a = -a (288a-216)
Квадратичне рівняння має єдине рішення за умови що дискримінант дорівнює 0
a(288a - 216) = 0
a₁ = 0 Чи не входить в ОДЗ так як при а = 0 ax - 3 = -3 <0
a₂ = -216/288 = 0,75 Входить в ОДЗ
Відповідь: 0,75
кошки весом: a,b,c,d;
сначала рассмотрим вариацию, что 2, 3 и даже все 4 кошки весят одинаково. в первом случае, при взвешивании попарно, имеется всего три разных веса и три вариации взвешивания, во-втором два разных веса и две вариации, во-втором один вес и только одна вариация взвешивания.
раз у нас не 1,2,3 разных вариаций взвешивания, а целых пять: 8кг,9кг,10кг,12кг,13кг - то все кошки имеют разный вес.
если у кошек 4 разных веса то при каком единственном варианте возможны два разных взвешивания двумя одинаковыми весами? 8кг,8кг. a+b = c+d = 8, тоесть в первом варианте взвешивалась первая и вторая, во втором варианте 3 и 4. иначе если бы взвешивались в обоих случаях только три кошки a+b = a+c, получалось бы что вторая и третья кошка равны по весу, но вначале мы доказали что это не возможно.
тоесть считаем доказанным, что a+b = c+d = 8
т.к. все кошки разного веса, то допустив, что а весит меньше b и с меньше d, то справедливо a < b и с < d;
а значит a < 8/2 < 4; c < 4;
значит при взвешивании попарно а и с, должно быть a + c < 8;
но остальные взвешивания показали другую массу 9кг,10кг,12кг,13кг, значит это не возможно.
тоесть не имеет решения
Поделитесь своими знаниями, ответьте на вопрос:
(2а во второй степени - б в третий степени) с в четвёртой степени.при а=-2.б=0.с=2.
подставляем значения,получаем
(2 умножить на 4 - 0 )умножить на 16= 8 умножить на 16 =128