sharaeva-is
?>

Какое из уравнений является линейным уравнением с двумя переменными? а) 15х+4у=20; б) ху=15; в) 2х+3=20; г) х +у =15

Алгебра

Ответы

Korobeinikov-Yulich23
Скорее всего наверное а)15x+4y=20 это  на 50%
klimovala2

Пусть скорость первого велосипедиста - Х км/ч, тогда скорость второго Х-2. Путь у обоих 20км. Время первого велосипедиста 20/х, второго 20/(х-2).

Так ка мы знаем, что первый пришел раньше второго на 20 минут (1/3 часа), составляем уравнение:

20/х = 20(х-2) + 1/3,        х не = 0

\frac{20(x-2) - 20x}{x(x-2)} = \frac{1}{3}

3(20х - 40 - 20х) = x^{2} - 2х

x^{2} - 2х -120 = 0

Решаем через дискриминант

D = 4 + 4*120 = 484

х1 = (2-22)/2 = -10 - не подходит, так ка скорость не может быть отрицательна

х2 = (2+22)/2=12

Следовательно скорость первого велосипедиста 12км/ч, а второго 10км/ч

Stroeva19651938

Объяснение:

sin x = √3/2

x = 2/3pi + 2pi*n (n - целое) и x = 1/3pi + 2pi*n (n - целое)

---

cos x = 1/2

x = -1/3pi + 2pi*n (n - целое) и x = 1/3pi + 2pi*n (n - целое)

---

cos x = -√3/2

x = 5/6pi + 2pi*n и x = -5/6pi + 2pi*n (n - целое)

---

cos x = -1

x = pi + 2pi*n (n - целое)

---

tg x = √3

x = 1/3pi + pi*n (n - целое)

---

sin x = -1/2

x = -1/6pi + 2pi*n и x = 7/6pi + 2pi*n (n - целое)

---

3sin^2x - 5sinx - 2 = 0

(3sinx +1)(sinx-2) = 0

sin(x) - 2 ≠ 0, поэтому 3sinx+1 = 0

sinx = -1/3

x = 2pi*n + arcsin(-1/3) и x = 2pi*n + pi - arcsin(-1/3) (n - целое)

---

7tg^2x + 2tgx - 5 = 0

(7tgx-5)(tgx+1) = 0

1) tgx = -1, x = -1/4pi + pi*n (n - целое)

2) tgx = 5/7, x = arctan(5/7) + pi*n (n - целое)

---

2cos^2x - cosx - 3 = 0

(2cosx -3)(cosx + 1) = 0

1) cosx = -1, x = pi + 2pi*n (n - целое)

2) cosx = 3/2, невозможно, т.к. cos(x) ≤ 1

---

2sinx = 1

sinx = 1/2

x = 1/6pi + 2pi*n и x = 5/6pi + 2pi*n (n - целое)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какое из уравнений является линейным уравнением с двумя переменными? а) 15х+4у=20; б) ху=15; в) 2х+3=20; г) х +у =15
Ваше имя (никнейм)*
Email*
Комментарий*