(x-2)(4-x)(x-3)^2> 0
нули функции 2; 3; 4;
т.к. (x-3)^2 выражение не может быть отрицательным, функция не доходит до нуля и возвращается не изменяя знак.
- + + -
x ∈ (2; 3) ∪ (3; 4);
2) (x+3)/(3-x) ≤ 0;
на ноль делить нельзя x≠3;
нуль функции -3;
- + -
x ∈ (-∞; -3] ∪ (3; ∞);
3)
нули функции 6; 0;
нули функции 1;
+ - +
[0; 6]
- +
(-∞; 1)
объединяем оба промежутка:
x ∈ [0; 1)
Здесь и далее фраза "не нарушая общности" будет означать, что мы можем так перетасовать вертикали и горизонтали, чтобы нужные нам линии имели нужные обозначения.
Пусть на некоторой вертикали (не нарушая общности - на вертикали А) находится 0<k<8 рыцарей (не нарушая общности - на полях с А1 по Аk). Рассмотрим лжеца на поле А8. Поскольку он утверждает, что на его горизонтали больше лжецов, чем на его вертикали, на самом деле это не так. Следовательно, на восьмой горизонтали как минимум k рыцарей (не нарушая общности - на полях с B8 по чётотам-8). Рассмотрим пересечения их вертикалей с первой горизонталью. Если бы на всех этих пересечениях стояли рыцари, то на первой вертикали оказалось бы минимум k+1 рыцарей, и рыцарь на А1 солгал бы. Значит, на каком-то из них (не нарушая общности - на В1) стоит лжец. При этом на вертикали В , согласно утверждению рыцаря с В8, более k рыцарей. Значит, следуя утверждению лжеца с B1, на горизонтали 1 также более k рыцарей. Получается, рыцарь с А1 лжёт. Противоречие.
Парадокс разрешим лишь в том случае, когда на каждой вертикали стоят либо 8 рыцарей, либо 8 лжецов. Из этого, в частности, следует доказываемое утверждение
Объяснение:
Не знаю правильно ли
Поделитесь своими знаниями, ответьте на вопрос:
Розв'яжіть рівняння: (х - 12)(х + 2) - (х + 4)(х - 4) = 32. ( детально росписать)
ответ: -4.