vasenkova1981
?>

Найдите наибольшее значение выражения 2ab-a^2-2b^2+4b. при каких значениях a и b оно достигается?

Алгебра

Ответы

НиколаевнаОльга
2ab-a^2-2b^2+4b=4b-(a^2-2ab+2b^2)=4b-(a+b)^2разность должна быть наибойшей, это достигается при a=0 b=1подставив, получим  2ab-a^2-2b^2+4b=4
arnika-ooo1

1)15xy-25y²=5у(3х-5у).

2)6а-6у+аb-by=6a+ab-6y-by=a(6+b)-y(6-b)=a(6+b)+y(6+b)=(6+b)(a-y).

3)16х^2-24ху=8х(2х-3у)

4)9m-9n+my-ny=9(m-n)+y(m-n)=(m-n)(9+y)

3. Можно решить это уравнение не как квадратное:

Выносим общий множитель за скобку:

7х(х+3)=0

И каждый множитель теперь приравниваем к нули.

7х=0                              х+3=0

х=0                                х=-3

ответ: х1=0 х2=-3

4. 3m (2m - 1) - (m + 3) (m - 2) =

= 6m^2 - 3m - (m^2 - 2m + 3m - 6) =  

= 6m^2 - 3m - m^2 + 2m - 3m + 6 =

= 5m^2 - 4m + 6

5.(4x-1)(3x-2)=(6x+1)(2x+3)-4x

12x²-8x-3x+2=12x²+18x+2x+3-4x

12x²-11x+2=12x²+16x+3   /-12x²

-11x+2=16x+3

27x=-1

x=-1/27

6.81^5= (3^4)^5=3^20

27^6=(3^3)^6=3^18

3^20 -3^18=

3^18(3^2 -1)=

3^18(9-1)=3^18*8

Кратно 8 ( есть множитель 8)

Nikolai710

Все знают, как выглядит парабола y = x2. В седьмом классе мы рисовали таблицу:

x -3 -2 -1 0 1 2 3

y 9 4 1 0 1 4 9

После этого по точкам строили график:

Параболу y = ax2 + bx + c мы не станем строить каждый раз «по точкам» — для выпускника школы это просто несолидно. Ведь нам надо знать закономерности поведения данной функции. А эти закономерности таковы.

1. Знак коэффициента a отвечает за направление ветвей. При a > 0 ветви направлены вверх, при a < 0 — вниз.

На рисунке приведены две параболы y = ax2 с равными по модулю, но противоположными по знаку значениями a.

2. Абсолютная величина коэффициента a отвечает за «раскрыв» параболы. Чем больше |a|, тем у́же парабола (больше прижата к оси Y ). Наоборот, чем меньше |a|, тем шире парабола (больше прижата к оси X).

На рисунке приведены две параболы y = a1x2 и y = a2x2, у которых a2 > a1 > 0

3. Абсцисса вершины параболы y = ax2 + bx + c находится по формуле:

x_{0}=-\frac{b}{2a}

Для нахождения ординаты вершины y0 удобнее всего подставить x0 в уравнение параболы. Но вообще, полезно помнить, что

y_{0}=-\frac{D}{4a},

где D = b2 − 4ac — дискриминант.

4. Точки пересечения параболы y = ax2 + bx + c с осью X находятся с решения квадратного уравнения ax2 + bx + c = 0. Если дискриминант равен нулю, то парабола касается оси X. Если дискриминант меньше нуля, то парабола не пересекает ось X.

5. Точка пересечения с осью Y находится легко: мы просто подставляем x = 0 в уравнение параболы. Получается точка (0, c).

А теперь покажем, как с графика функции y = ax2 + bx + c решать квадратные неравенства.

1. Часто на тестировании мы предлагаем решить неравенство

x2 < 400

Справляются далеко не все. Очень часто, не задумываясь, выдают «ответ»: x < ± 20.

Однако сама эта запись — абсурдна! Представьте, что вы слышите прогноз погоды: «Температура будет меньше плюс-минус двадцати градусов». Что, спрашивается, надеть — рубашку или шубу? :-)

Давайте решим это неравенство с графика. Изобразим схематично график функции y = x2 и отметим все значения x, для которых y < 400.

Теперь мы видим правильный ответ: x ∈ (−20; 20).

2. Решим неравенство: x2 − 3x − 10 ≥ 0.

Графиком функции y = x2 − 3x − 10 служит парабола, ветви которой направлены вверх. Решая квадратное уравнение x2 − 3x − 10 = 0, находим x1 = −2 и x2 = 5 — в этих точках парабола пересекает ось X. Нарисуем схематично нашу параболу:

Мы видим, что при x ∈ (−2; 5) значения функции отрицательны (график проходит ниже оси X). В точках −2 и 5 функция обращается в нуль, а при x < −2 и x > 5 значения функции положительны. Следовательно, наше неравенство выполняется при \small x\in \left ( -\infty ;-2 \right ]\cup \left [ 5;+\infty \right ).

Обратите внимание, что для решения неравенства нам достаточно было схематично изобразить параболу. Ось Y вообще не понадобилась!

3. Ещё одно неравенство: x2 + 2x + 4 > 0.

Ветви параболы y = x2 + 2x + 4 направлены вверх. Дискриминант отрицателен, т. е. уравнение x2 + 2x + 4 = 0 не имеет корней. Стало быть, нет и точек пересечения параболы с осью X.

Раз ветви параболы направлены вверх и она не пересекает ось X — значит, парабола расположена над осью X.

Получается, что значения функции положительны при всех возможных x. Иными словами, решения нашего неравенства — это все действительные числа.

ответ: \small \left ( -\infty ,+\infty \right ).

Квадратные неравенства являются неотъемлемой частью ЕГЭ. Разберём типичные примеры из банка заданий ЕГЭ.

4. Завиcимоcть объeма cпроcа q (тыc. руб.) на продукцию предприятия-монополиcта от цены p (тыc. руб.) задаeтcя формулой q = 100 − 10p. Выручка предприятия за меcяц r (в тыc. руб.) вычиcляетcя по формуле r(p) = q · p. Определите наибольшую цену p, при которой меcячная выручка r(p) cоcтавит не менее 240 тыc. руб. ответ приведите в тыc. руб.

Подставим выражение для q в формулу выручки:

r(p) = qp = (100 − 10p)p = 100p − 10p2

Выручка должна быть не менее (то есть больше или равна) 240 тысяч рублей. Поскольку цена p уже выражена в тысячах рублей, мы можем записать это условие в виде неравенства:

100p − 10p2 ≥ 240

Переносим всё вправо и делим на 10:

p2 − 10p + 24 ≤ 0

Для схематичного построения параболы находим корни уравнения p2 − 10p + 24 = 0. Они равны 4 и 6. Остаётся сделать рисунок.

Решением нашего неравенства служит отрезок [4; 6]. Нас просили найти наибольшее p. Оно равно 6.

ответ: 6.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите наибольшее значение выражения 2ab-a^2-2b^2+4b. при каких значениях a и b оно достигается?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lobutev
k075ko8
AnzhelikaSlabii1705
bykotatyana
anovikovsr
sbarichev330
elenarumack
laplena1982750
Makarov
megapolisgroup
qwert28027170
Киларджиева Диана440
frdf57
Наталья
akremlev2015