х + у = 6
у = 6-х
нужно найти минимум функции x^3 + (6-x)^3
можно преобразовать, получим кв.уравнение: x^3 + 216 - 108x + 18x^2 - x^3 =
18x^2 - 108x + 216 = 18*(x^2 - 6x + 12) , ветви вверх => в вершине минимум
абсцисса вершины = -b/2a = 6/2 = 3 значение х для минимума функции
значит, сумма двух чисел: 3+3
можно исследовать функцию, т.е. найти производную: 3x^2 + 3*(6-x)^2*(-1) = 3x^2 - 3*(36-12x+x^2) = 3*(x^2 - 36 + 12x - x^2) = 3*12х - 3*36
из условия равенства производной 0 получим 3*12х - 3*36 = 0
12х = 36
х = 3 => y = 3
Вероятности попадания из каждого орудия:
p1 = 0,8; p2 = 0,7; p3 = 0,9;
Вероятность не попасть из каждого орудия:
q1 = 1 - 0,8 = 0,2; q2 = 1 - 0,7 = 0,3 ; q3 = 1 - 0,9 = 0,1;
Только один снаряд попадет в цель:
Пусть А - событие, при котором будет только одно попадание.
А1, A2, A3 - попадание было из орудия 1,2 или 3.
A`1, A`2, A`3 - попадания не было из орудия 1,2 или 3. Это противоположные события.
Представим вероятность как сумму вероятностей несовместных событий:
P(A) = P(A1)P(A`2)P(A`3) +P(A`1)P(A2)P(A`3)+ P(A`1)P(A`2)P(A3) =
= p1 · q2· q3 + q1 · p2 · q3 + q1 · q2 · p3 =
= 0,8 · 0,3 · 0,1 + 0,2 · 0,7 · 0,1 + 0,2 · 0,3 · 0,9 = 0,092;
Только два снаряда попадут в цель:
P(A) = p1 · p2· q3 + p1 · q2 · p3 + q1 · p2 · p3 =
= 0,8 · 0,7 · 0,1 + 0,8 · 0,3 · 0,9 + 0,2 · 0,7 · 0,9 = 0,398;
Хотя бы один снаряд попадет в цель:
Пусть A` - противоположное событие - ни один снаряд не попадет в цель:
P(A`) = q1 · q2 · q3 = 0,2 · 0,3 · 0,1 = 0,006;
Противоположное ему событие A - хотя бы один снаряд попадет в цель будет:
P(A) = 1 - P(A`) = 1 - 0,006 = 0,994;
ответ: а) 0,092; б) 0,398; в) 0,994.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Система уравнений: корень из x +корень из y=4, x + y - 3 * корень из xy=1. tg (3x+27градусов)=корень из 3
для того, чтобы узнать принадлежит ли точка графику, подставим ее координаты в функцию y(x)=5x+6
1)
а(1; 9)
точка не на графике.
2)
b(-2; -4)
точка на графике.
3)
c(0; 6)
точка на графике.
4)
d(-1; 2)
точка не на графике.
ответ: точки b(-2; -4) и c(0; 6) принадлежат графику функции y(x)=5x+6.