ответ:
Найдём производную нашей данной функции: f(х) = соs^2 (х / 3).
Воспользовавшись основными формулами и правилами дифференцирования:
(х^n)’ = n * х^(n-1).
(соs (х)’ = -sin (х).
(с)’ = 0, где с – соnst.
(с * u)’ = с * u’, где с – соnst.
y = f(g(х)), y’ = f’u(u) * g’х(х), где u = g(х).
Таким образом, производная нашей данной функции будет следующая:
f(х)' = (соs^2 (х / 3))’ = (х / 3)’ * (соs (х / 3))’ * (соs^2 (х / 3))’ = (1 / 3) * (-sin (х / 3)) * 2 * (соs (х / 3)) = (2 / 3) * (-sin (х / 3)) * (соs (х / 3)).
ответ: Производная нашей данной функции будет равна f(х)' = (2 / 3) * (-sin (х / 3)) * (соs (х / 3)).
Объяснение:
3.5(4). у= -3х²+8х+3
Парабола, ветви которой направлены вниз.
Абсцисса вершины х(в)=-b/2a=-8/-6=4/3=1 1/3 , ордината вершины
у(в)= -3*(4/3)²+8*(4/3)+3=25/3=8 1/3 . V(4/3,25/3)
Точки пересечения с ОХ: -3х²+8х+3=0 , D=25 , x=3 , x=-1/3 ,
A(3,0) , B(-1/3,0)
Точка пересечения с ОУ: у(0)=3 , С(0,3) .
3.6(2). у=3-2x-x² , у=-(х+1)²+4
Парабола, ветви которой направлены вниз.
Абсцисса вершины х(в)=-b/2a=-(-2)/-2= -1 , ордината вершины
у(в)=3+2-1=4 . V(-1,4)
Ось симметрии параболы : х= -1 .
Точки пересечения с ОХ: 3-2x-х²=0 , x=1 , x=-3 ,
A(1,0) , B(-3,0)
Точка пересечения с ОУ: у(0)=3 , С(0,3) .
3.7(2). у=(3-x)(x-4) , y= -x²+7x-12
Парабола, ветви которой направлены вниз.
Абсцисса вершины х(в)=-b/2a=-7/-2=3,5 , ордината вершины
у(в)= -(3,5)²+7*3,5-12=0,25 . V(3,5 ; 0,25)
Точки пересечения с ОХ: -х²+7x-12=0 , x=3 , x=4 ,
A(3,0) , B(4,0)
Точка пересечения с ОУ: у(0)=-12 , С(0,-12) .
Поделитесь своими знаниями, ответьте на вопрос:
Торт был разрезан на 12 кусков , оля съела 25% всего торта. сколько кусков осталось?