Приводим дроби к общему знаменателю. общий знаменатель 2x·(х-3)·(х-3)·(х+3) первую дробь умножаем на 2x·(х-3), вторую дробь на 2x·(х+3), третью дробь на (х-3)² получим: дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель отличен от 0. приравниваем к нулю числитель 6x² - 18x - 2x² -6x-3x²+18x-27=0, x² - 6x - 27 = 0 d=(-6)² - 4·(-27)=36+108 =144 = 12² x₁=(6-12)/2=-3 или х₂=(6+12)/2=9 так как знаменатель не должен быть равным нулю, то это означает, что х≠0, х≠3, х≠ -3 поэтому х₁ = - 3 не является корнем уравнения ответ. х=9