40
Объяснение:
Модули принимают значение 0, когда y = x² и y = -x². Начертим графики этих функций (синие, пунктирные). Они делят плоскость на 4 области. Рассмотрим, как раскрываются модули: "внутри" верхней параболы оба модуля раскрываются с плюсом (убеждаемся подстановкой точки x = 0, y = 1, оба подмодульных выражения положительны, обозначим как ++), "внутри" нижней — оба с минусом (подставляем x = 0, y = -1, обозначим как --), "снаружи" обеих парабол — первый с минусом, второй с плюсом (подставляем x = ±1, y = 0, обозначим как -+).
Рассмотрим разные случаи раскрытия модулей:
++:
y = 3 - 2x — прямая, заключённая внутри верхней параболы. По неравенству нам подходит всё, что ниже этой прямой. Она пересекает параболу y = x² при x² = 3 - 2x ⇔ x² + 2x - 3 = 0 ⇔ x = -3; 1.
--:
y = 2x - 3 — прямая, заключённая внутри нижней параболы. По неравенству подходит всё, что выше этой прямой. Она пересекает параболу y = -x² при -x² = 2x - 3 ⇔ x² + 2x - 3 = 0 ⇔ x = -3; 1.
-+:
x = -3; 1 — это две вертикальные прямые, заключённые между параболами (в области -+). По неравенству подходит всё, что между ними. Они пересекаются с параболами в тех же точках, что и прямые.
Красным обозначим полученные отрезки. Из предыдущих рассуждений получаем, что нам подходит всё, что внутри красной фигуры. Эта фигура — трапеция, так как её основания (вертикальные прямые x = -3; 1) параллельны и не равны (длина первого отрезка — 2·(-3)² = 18, длина второго — 2·1² = 2, умножаем на 2 в силу симметрии графиков y = x² и y = -x² относительно Ox). Высота — расстояние между этими прямыми, то есть 1 - (-3) = 4. Площадь трапеции равна
Область определения:
и
Тогда
Сократим на получим
Графики функций и
совпадают за исключением одной точки.
На графике нет точки с абсциcсой
Прямая y=kx, проходящая через точку ( ) будет иметь с графиком ровно одну общую точку
О т в е т.
2.
Область определения:
и
Сократим на получим
Графики функций и
совпадают за исключением двух точек.
На графике нет точек с абсциcсами
Прямые y=kx, проходящие через точки ( ) и ( ) не будут иметь с графиком общих точек
Найдем k:
О т в е т.
Поделитесь своими знаниями, ответьте на вопрос:
Наидите сумму и разность выражений х+у и х-у х в квадрате - у в квадрате и х в квадрате + у в квадрате