99) Правило: .
При извлечении квадратного корня или корня чётной степени ( 2n - обозначение чётного числа ) из а² (или ) надо не забыть поставить модуль, ведь сам корень чётной степени может быть только неотрицательным . А модуль любого выражения тоже неотрицателен . Причём, если выражение под модулем неотрицательно, то модуль равен самому этому выражению. Если выражение под модулем отрицательно, то модуль равен этому выражению, взятому с противоположным знаком.
Например, . Как видим, в любом
случае получаем модуль, равный неотрицательному числу .
P.S. Обратите внимание, что в 5 примере b<0 , но под модулем записан b² , который несмотря на отрицательное b всё равно будет положительным, и тогда .
В 6 примере, так как b≤0 , нечётная степень b тоже будет неположительной, тогда если .
100) Если , то .
Если , то .
Заметь, что все выражения под знаком квадратного корня или корня чётной степени неотрицательны ! И когда мы внесли под корень множители, получившиеся выражения должны быть неотрицательными .
Например, в 6 примере:
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнения без фотоматча -2x^2+4x=5+cos пих\2 и второе -2x^2+2x+2=3-sin^2 пих
Объяснение:
у=2х²-6х-2
наименьшее значение функции ищем с производных
первая производная даст нам критическую точку (точку минимума или максимума)
y'= 4x -6 = 2(2х - 3)
для поиска приравняем первую производную к нулю
2(2х-3)=0; х₁ - 3/2 - это критическая точка
значение функции в точке
у(3/2) = - 13/2
теперь надо понять минимум это или максимум
если вторая производная больше нуля, то это минимум
и наоборот
у" = (4х-6)' = 4
y(3/2) = 4 > 0 - это точка минимума и значение функции в этой точке будет
у = - 13/2