ответ:
a) х∈(-∞; -2] u [-1; +∞); б) х∈(-∞; 1) u (3; +∞)
объяснение:
а) (х² - 3х - 1)/(х² + х + 1) ≤3
х² + х + 1 > 0 при х∈r, так как дискриминант уравнения х² + х + 1 =0 отрицательный d = 1 - 4 = -3
х² - 3х - 1 ≤ 3х² + 3х + 3
2x² + 6x + 4 ≥ 0
или
х² + 3х + 2 ≥ 0
рассмотрим уравнение х² + 3х + 2 = 0
d = 9 -8 = 1
x1 = 0.5(-3 - 1) = -2; x2 = 0.5(-3 + 1) = -1
тогда х² + 3х + 2 ≥ 0 при х∈(-∞; -2] u [-1; +∞)
б) (х² + 2х - 1)/ (х² - х + 1) > 2
х² - х + 1 > 0 при х ∈ r, так как дискриминант уравнения х² - х + 1 = 0 отрицательный d = 1 - 4 = -3
х² + 2х - 1 < 2х² - 2х + 2
x² - 4x + 3 > 0
рассмотрим уравнение х² - 4х + 3 = 0
d = 16 - 12 = 4
x1 = 0.5(4 - 2) = 1; x2 = 0.5(4 + 2) = 3
тогда x² - 4x + 3 > 0 при х∈(-∞; 1) u (3; +∞)
Поделитесь своими знаниями, ответьте на вопрос:
Разложите на множители (a+9)^2+2a(a+9)