1)1/x-1=2/x+1 2)x/x-5=x-2/x-6
1/x-1=2/x+1,x≠1,x≠-1 x/x-5=x-2/x-6,x≠5,x≠6
x+1=2(x-1) x*(x-6)=(x-2)*(x-5)
x+1=2x-2 x^2-6x=x^2-5x-2x+10
x-2x=-2-1 -6x=-5x-2x+10
-x=-3 -6x=-7x+10
x=3,x≠1,x≠-1 -6x+7x=10
x=3 x=10,x≠5,x≠6
3) 3/y-2=2/y-3 x=10
3/y-2=2/y-3,y≠2,y≠3 4)z+1/z-1=z-5/z-3
3(y-3)=2(y-2) z+1/z-1=z-5/z-3,z≠1,z≠3
3y-9=2y-4 (z+1)*(z+3)=(z-5)*(z-1)
3y-2y=-4+9 z^2-3z+z-3=z^2-z-5z+5
y=-4+9 -3z+z-3=-z-5z+5
y=5,y≠2,y≠3 -2z-3=-6z+5
y=5
Объяснение:
Рассмотрим последовательность из (n+1) числа.
1, 11, 111, , 111..111 (n+1 единиц) (*)
При делении любого натурального числа на n мы можем получить один из остатков:
0 ( деление без остатка),1,2,...,n-1
Рассмотрим n ячеек и пронумеруем их остатками при делении на n:
0,1,2n-1
Тогда, согласно принципу Дирихле,
при раcпределении (n+1) чисел (*) по этим ячейкам найдется ячейка, в которой окажутся , по крайней мере два числа
А и B (A>B), т.к. число распределяемых чисел (n+1) больше чем ячеек n.
А это будет означать, что числа А и В будут иметь одинаковые остатки при делении на n.
Из чего следует, что их разность будет нацело делиться на n:
Пусть А=11...1 (k единиц) B=11..1 (m единиц)
A-B = 11..1-11...1=11...100..0 ( в полученной десятичной записи разности
(k-m) единиц, m нулей)
и эта разность будет делиться на n
Таким образом, мы доказали существование натурального числа , кратного n , в десятичной записи которого встречаются лишь нули и единицы.
Объяснение: если не правильно прости :(
Поделитесь своими знаниями, ответьте на вопрос:
Примените формулу разности квадрата x^2-1=0 3x^2-48=0 16/27 x^2 - 1/12 =0 3x^2-7=0