ответ:
1.
а)tg(0.75pi)*cos(0.75pi)+ctg(-pi/6)*sin(pi/6) = /2 - /2 = (-)/2
б) sin(870)-sin(240)*ctg(240)=0.5 + /(2* ) = 1
2.
cos^2(t) - sin^2(t)/(tg(-t)*ctg(t)) = cos^2(t) + sin^2(t)/(tg(t)*ctg(t)) = cos^2(t) + sin^2(t) = 1
3.
а)
sint = 1/2
t1 = 2pi * a + pi/6
t2 = 2pi * a + 5pi/6, где a - любое число
б)
sin(pi/3+t)=-\sqrt[2]{3}/2
t+pi/3 = 2pi * a - pi/3;
t+pi/3 = 2pi * a + 4pi/3
t1 = 2pi * a - 2pi/3
t2 = 2pi * a + pi
4.
sin(185)= ~-0.08
sin(95)= ~0.99
sin(300)= ~-0.86
sin(52)= ~0.78
sin300, sin185, sin52, sin95
5.
y = -
строишь синусоид. вместо x подставляй pi/2, pi и т.д., чтобы найти значение функции. учти, что график симметричен относительно начала координат, также функция периодична.
ИЛИ
https://math.semestr.ru/math/plot.php
6.
y=3sinx
f(-pi/4)= - 3 * \sqrt[2]{2}/2 - наим.
f(2pi/3) = 3 * /2
f(pi/2) = 3 * 1 = 3 - наиб.
мы нашли от pi/2, т.к. sin(90) > sin(120), значит 3sin(90)>3sin(120)
В решении.
Объяснение:
1) 5а³ - 125аb² = 5a(a² - 25b²) = 5a(a - 5)(a + 5);
2) a² - b² - 5a + 5b =
= (a² - b²) - (5a - 5b) =
= (a - b)(a + b) - 5(a - b) =
= (a - b)(a + b - 5);
3) а²- 2ав + в² - ас + вс =
= (а²- 2ав + в²) - (ас - вс) =
= (a - b)² - c(a - b) =
= (a - b)(a - b - c);
4) 25a² + 70ab + 49b² =
= (5a + 7b)² =
= (5a + 7b)(5a + 7b);
5) a² - 2ab + b² - 3a + 3b =
= (a² - 2ab + b²) - (3a - 3b) =
= (a - b)² - 3(a - b) =
= (a - b)(a - b - 3);
6) 63ab³ - 7a²b =
= 7ab(9b² - a);
7) (b - c)(b + c) - b(b + c) =
= (b + c)(b - c - b) =
= -c(b + c);
8) m² + 6mn + 9n² - m - 3n =
= (m² + 6mn + 9n²) - (m + 3n) =
= (m + 3n)² - (m + 3n) =
= (m + 3n)(m + 3n - 1);
9) a² - 9b² + a - 3b =
= (a² - 9b²) + (a - 3b) =
= (a - 3b)(a + 3b) + (a - 3b) =
= (a - 3b)(a + 3b + 1).
Поделитесь своими знаниями, ответьте на вопрос:
Всем ! 7 кл. авт.г.в.дорофеев. произведение: (варианты ): - а)3ас*(т.е.умножить)*5аб=? б)10х*9у*(-7а)=? всем !