1/ рассмотрим когда основание vtymit 1 0< x< 1 но по одз такого не может быть x> 2
2/ рассмотри когда x> 1 ( основание > 1)
log (x) (x-2) < = log (x) 1
x-2 < =1
x< =3
получаем 1< x< =3
накладываем на одз x> 2
x=(2 3] или 2< x< =3
Araevich
26.12.2022
Дисперсией числового ряда называется среднее арифметическое квадратов отклонений от среднего арифметического. пусть есть некий ряд (значения некоторой случайной величины - скажем, рост учеников в классе): 145, 155, 130, 126, 134. 1) находим среднее арифметическое: (145 + 155 + 130 + 126 + 134) / 5 = 138 2) находим среднее арифметическое квадратов отклонений: дисперсия характеризует разброс - чем больше дисперсия, тем сильнее "разбросан" (варьируется) признак относительно центрального значения.
pri02
26.12.2022
Треугольник acb - равнобедренный по определению, так как ac = bc по условию. рассмотрим треугольники cao и cbo.у них co - общая сторона, cb = ca и oa = ob - по условию .значит,треугольник cao равен треугольнику cbo по третьему признаку равенства треугольников. из равенства треугольников следует равенство соответствующих углов,значит,< aco = < bco. так как эти углы равны, то cq - биссектриса треугольника acb. по свойству биссектрисы, проведенной к основанию равнобедренного треугольника cq также является медианой этого треугольника. рассмотрим треугольники aoq и boq. у них ao = bo - по условию , aq = bq - так как cq является медианой, oq - общая сторона. значит,по третьему признаку равенства треугольников треугольник aoq равен треугольнику boq. из равенства треугольников следует равенство соответствующих углов, значит, < aoq = < boq. ч.т.д.
log (x) (x-2) < =0
одз x> 0 x-2> 0 x> 2 и вспомним log (x) 1 = 0
1/ рассмотрим когда основание vtymit 1 0< x< 1 но по одз такого не может быть x> 2
2/ рассмотри когда x> 1 ( основание > 1)
log (x) (x-2) < = log (x) 1
x-2 < =1
x< =3
получаем 1< x< =3
накладываем на одз x> 2
x=(2 3] или 2< x< =3