если х₁ и х₂ корни квадратного уравнения, то по т.виета:
{ х₁ * х₂ = -2/3
{ х₁ + х₂ = 4/3
найдем коэффициенты нового квадратного
{
{
x² + 4x - 6 = 0
и можно сделать проверку:
корни получившегося уравнения d=16+24=40
х₁ = (-4-√40)/2 = -2-√10
х₂ = -2+√10
найдем корни для первого уравнения: d=16+24=40
х₁ = (4-√40)/6 = (2-√10)/3
х₂ = (2+√10)/3
-2-√10 = 2/х₁ = 2 : ((2-√10)/3) = 2*3/(2-√10) = 6*(2+√10)/(-6) = -(2+√10) верно
-2+√10 = 2/х₂ = 2 : ((2+√10)/3) = 2*3/(2+√10) = 6*(2-√10)/(-6) = -(2-√10) верно
1: 2=1/2 часть бассейна наполняют обе трубы за 1 час
пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+3) часов. за 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+3), а обе - 1/х+1/(х+3) или 1/2 бассейна. составим и решим уравнение:
1/х+1/(х+3)=1/2 |*2x(x+3)
2x+6+2x=x^2+3x
x^2+3x-4x-6=0
x^2-x-6=0
по теореме виета:
х1=3; х2=-2< 0 (не подходит)
ответ: первая труба может наполнить бассейн за 3 часа.
Поделитесь своими знаниями, ответьте на вопрос: