Нет, не пересекает
Объяснение:
Найти в каких точках график(в данном случае парабола) пересекает оси и пересекает ли вообще, можно найти двумя Начертить график
Долгий даже если изображать схематично
(Но если коэфицент у x² небольшой, до 3, то можно попробовать)
2) Подставить под каждую неизв. переменную ноль
Вот это уже легче и быстрее
При пересечении с ось x y равен нулю
Это законное правило, и по-другому быть не может
Поэтому нужно вместо y подставить ноль
Получится выражение:
x²- x + 12 = 0
Это квадратное уравнение
Здесь будет проще решить через теорему виета
Но сначала стоит проверить, чему равен дискриминант
D = b²-4ac
Подставляем:
D = (-1)² - 4 * 1 * 12
D = -47
Чётного корня из отрицательного числа НЕ СУЩЕСТВУЕТ
Поэтому y НИКОГДА НЕ будет равен нулю
Следовательно: График НЕ пересекает ось x
Поэтому здесь один из вариантов:
Либо ветви параболы вниз
Либо вершина параболы выше оси x
ЗДесь второй случай, так как старший коэфицент a - положительный
А значит ветви направлены вверх
P.s. Если нужно найти пересекает ли график ось y, то подставь вместо x ноль
Если что-то не понятно, пиши - отвечу
Поделитесь своими знаниями, ответьте на вопрос:
Преобразуйте в многочлен стандартного вида ввражение (2х-1)^3
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так