1.(х-у)10=10x-10y
(а+б-с)2=2a+2б-2с
(а-б)5а=5а^2-5aб
2.
2х-2у=2(x-y)
12х+6у=6(2x+y)
4-4а=4(1-a)
аб+бс=б(a+c)
6х+8ху=2x(3+4y)
Аппарат элементарных преобразований графиков функций)
График функции y=-2x+2y=−2x+2 можно получить из графика функции y=(x - 1) \cdot (-1) \cdot 2y=(x−1)⋅(−1)⋅2 , то есть:
1. График y = xy=x смещаем на 1 вправо.
2. Отражаем его зеркально по оси значений (a.k.a. ординат).
3. Растягиваем его по оси значений в два раза.
Получаем фигуру 1.
Найдите точки пересечения графика этой функции с осями координат.
y=-2x+2
Сначала x=0, потом y=0.
От x=0 имеем y=2.
От y=0 имеем -2x+2=0 => x=1. Точка x=1,y=0.
Найдите значение функции, если значение аргумента равно -1.
-2 \cdot (-1) +2 = 4−2⋅(−1)+2=4
При каком значении х функция принимает значение, равное 8?
-2x+2 = 8
-2x=6
x=-3
Принадлежит ли графику функции точка А(10;-18)?
Щас проверим. -2 \cdot 10 + 2 = -18−2⋅10+2=−18 . Да. Принадлежит.
Найдите точку пересечения графика данной функции и функции y=4.
-2x+2 = 4
-x+1=2
-x=1
x=-1
Точка x=-1,y=4.
ответобьяснение
Объяснение:
при имеющемся знаменателе необходимо производить деление такого типа функции как
y
=
x
+
2
⋅
x
x
4
−
1
;
при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа
y
=
√
x
+
1
или
y
=
x
√
2
3
⋅
x
+
3
;
при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как
y
=
5
⋅
(
x
+
1
)
−
3
,
y
=
−
1
+
x
1
1
3
,
y
=
(
x
3
−
x
+
1
)
√
2
, которые определены не для всех чисел;
при наличии переменной под знаком логарифма или в основании вида
y
=
ln
x
2
+
x
4
или
y
=
1
+
log
x
−
1
(
x
+
1
)
причем основание является числом положительным, как и число под знаком логарифма;
при наличии переменной, находящейся под знаком тангенса и котангенса вида
y
=
x
3
+
t
g
(
2
⋅
x
+
5
)
или
y
=
c
t
g
(
3
⋅
x
3
−
1
)
, так как они существуют не для любого числа;
при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида
y
=
a
r
c
sin
(
x
+
2
)
+
2
⋅
x
2
,
y
=
a
r
c
cos
(
|
x
−
1
|
+
x
)
, область определения которых определяется ни интервале от
−
1
до
1
.при имеющемся знаменателе необходимо производить деление такого типа функции как
y
=
x
+
2
⋅
x
x
4
−
1
;
при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа
y
=
√
x
+
1
или
y
=
x
√
2
3
⋅
x
+
3
;
при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как
y
=
5
⋅
(
x
+
1
)
−
3
,
y
=
−
1
+
x
1
1
3
,
y
=
(
x
3
−
x
+
1
)
√
2
, которые определены не для всех чисел;
при наличии переменной под знаком логарифма или в основании вида
y
=
ln
x
2
+
x
4
или
y
=
1
+
log
x
−
1
(
x
+
1
)
причем основание является числом положительным, как и число под знаком логарифма;
при наличии переменной, находящейся под знаком тангенса и котангенса вида
y
=
x
3
+
t
g
(
2
⋅
x
+
5
)
или
y
=
c
t
g
(
3
⋅
x
3
−
1
)
, так как они существуют не для любого числа;
при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида
y
=
a
r
c
sin
(
x
+
2
)
+
2
⋅
x
2
,
y
=
a
r
c
cos
(
|
x
−
1
|
+
x
)
, область определения которых определяется ни интервале от
−
1
до
1
.
Поделитесь своими знаниями, ответьте на вопрос:
1.найдите многочлен , равный произведению одночлена и многочлена (х-у)10 (а+б-с)2 (а-б)5а 2.вынесите за скобки общий множитель многочлена 2х-2у 12х+6у 4-4а аб+бс 6х+8ху
10x-10y
2a+2б-2c
5a-5б
2(х-y)
6(2x+y)
4(1-a)
б(а+с)
2х(3+4y)