anton1969026203
?>

Тригонометрическое выражение: sin(+tg()

Алгебра

Ответы

slastena69678
Sin(α+π)+tg(α-π)=-sinα+tg(-(π-α))=-sinα-tg(π-α)=-sinα-tg(-α)=-sinα+tgα=
=tgα-sinα
iralkap
Дублирую для Вас решение - я его только что кому-то другому написал, но вот отыскал уже:

задача - найти радиус окружности, описанной вокруг квадрата, то есть дна бассейна.

нетрудно заметить, что радиус этот совпадает с половиной диагонали того самого квадрата. Вот ее и будем искать.

диагонали квадрата равны  и пересекаются под прямым углом, а значит - искомая половина диагонали  - катет прямоугольного равнобедренного треугольника, гипотенузой которого является сторона квадрата.
Зная гипотенузу по теореме Пифагора легко подсчитаем катет, а значит,
найдем сторону квадрата - и катет (он же радиус, он же высота подвешенной лампочки) у нас в кармане!

приступим:

сторона квадрата - корень из площади =  корень из 32 = 4 корня из двух

осталось посчитать упоминавшийся ранее катет, он же искомый радиус:
2r в квадрате = квадрат гипотенузы  = 32
r = корень из 32 деленный на 2 = два корня из двух

это все!
Лампа висит на высоте 2 корня из двух [метров]

Ура!)
Тариелович871

Через вершину C прямоугольника ABCD проведена прямая, параллельная диагонали BD и пересекающая прямую AB в точке M. Через точку M проведена прямая, параллельная диагонали AC и пересекающая прямую BC в точке N. Найдите периметр четырехугольника ACMN, если диагональ BD равна 8 см

–––––––––––––––

Казалось бы очевидно-  стороны четырехугольника ACMN равны между собой и равны диагоналям прямоугольника. Тем не менее это нужно доказать.

МС║ВD по построению.

АВ║ СD - стороны прямоугольника, след, ВМ║СD 

Противоположные стороны четырехугольника МВСД лежат на параллельных прямых. ⇒

МВДС - параллелограмм.⇒

  ВМ=СD. Но СD=АВ ⇒ ВМ=АВ. 

СN ⊥ АМ и делит ее пополам. СВ - высота и медиана ∆ АСМ,⇒

∆ АСМ равнобедренный, и СВ его биссектриса. 

В ∆ АМN  отрезок NB –  медиана и высота ⇒ 

∆ МАN равнобедренный, и BN- его биссектриса.

AN= MN, a MN=MC=AC

∠АМN =∠MАС  как накрестлежащие при параллельных МN и АC и секущей АМ. 

Но углы равнобедренного ∆ САМ при АМ равны.⇒∠ АМN=∠СМА=∠САМ ,

МВ ⊥ СN⇒ является высотой ∆ NMC  и оо равенству углов при М  - биссектрисой. ⇒

 NMC -  равнобедренный, и NM=MC, отсюда следует равенство  AN=MN=MC=АС

Четырехугольник АСМN- ромб. 

АС- диагональ прямоугольника  ABCD и по условию равна 8

Периметр АСМN=8*4=32


Через вершину c прямоугольника abcd проведена прямая, параллельная диагонали bd и пересекающая пряму

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Тригонометрическое выражение: sin(+tg()
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Titeeva-Vladimirovich283
sadinuraliev263
videofanovitch
sergeyshuvalov
hello
Сергеевна-С.А.1549
shneider1969
palmhold578
МихайловнаLarisa1150
npdialog66
el-dent12
muravlev2702
kotofei147516
Igor1406
Mashkov-Daniil1764