Рассмотрим две функции g(x) = x и f(x) = arcsin x.
g(x) = x - линейная, строго монотонно возрастающая, нечётная непрерывная функция, D(g) = R. График - прямая линия, проходящая через начало координат.
f(x) = arcsin x - обратная тригонометрическая, строго монотонно возрастающая, нечётная непрерывная функция, D(f) = [-1; 1]. График - кривая линия, проходящая через начало координат.
Оба графика проходят через начало координат (0;0).
Прямая y=x - касательная к графику функции f(x) = arcsin x в точке перегиба x₀=0, то есть графики пересекаются только в этой точке.
ответ : уравнение имеет единственный корень x=0
annademidova-74
11.03.2020
Объяснение: Решение : ///////////////////////////
Михайловна991
11.03.2020
Необходимо начертить единичную окружность и заставить точку "бегать" по окружности: 3П - это 1,5 круга, соответствует углу 180 градусам. Точка будет иметь координаты (-1,0). По определению sin и cos это и есть их значения: sin3П=0, cos3П=-1. Аналогично: sin 4п=0, сos4П =1 sin3,5п=1, сos3,5П=0; sin5/2П=1, cos 5/2П=0 sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число (2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д. Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..
nst-33764
11.03.2020
Пусть х км/час - скорость мотоциклиста, у км/час -скорость велосипедиста. До встречи мотоциклист проехал 28х км, а велосипедист 28у км. После встречи оставшийся путь мотоциклист проехал за 28у/х минут, а велосипедист за 28х/у. Зная, что мотоциклист был в пути на 42 мин меньше составим уравнение: 28х/у-28у/х=42 Обозначим дробь х/у новой переменной: х/у=z Тогда уравнение примет вид: 28z-28/z=42 Приводим к общему знаменателю: 28z^2+42z-28=0 Решая квадратное уравнение получим корни: z1=-2 не подходит; z2=1/2. СЛедовательно, х/у=1/2. т.Е. скорость велосипедиста в 2 раза меньше скорости мотоциклиста. Отсюда имеем время движения велосипедиста из В в А равно 28+56=84минуты. ответ: 84
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сколько корней имеет уравнение arcsinx=x? ? с объяснением
Рассмотрим две функции g(x) = x и f(x) = arcsin x.
g(x) = x - линейная, строго монотонно возрастающая, нечётная непрерывная функция, D(g) = R. График - прямая линия, проходящая через начало координат.
f(x) = arcsin x - обратная тригонометрическая, строго монотонно возрастающая, нечётная непрерывная функция, D(f) = [-1; 1]. График - кривая линия, проходящая через начало координат.
Оба графика проходят через начало координат (0;0).
Прямая y=x - касательная к графику функции f(x) = arcsin x в точке перегиба x₀=0, то есть графики пересекаются только в этой точке.
ответ : уравнение имеет единственный корень x=0