При делении целых чисел на 11 мы получаем остатки от 0 до 10. Рассмотрим какие остатки могут давать целые числа в пятой степени при делении на 11. Для этого достаточно возвести числа от 0 до 10 в пятую степень и рассмотреть остатки от их деления на 11. В итоге получим, что при делении целых чисел в пятой степени на 11 получаются остатки 0, 1 и 10. В левой части уравнения стоит сумма трех целых чисел в пятой степени. Следовательно, она может давать остатки 0, 1, 2, 3, 8, 9 и 10. Но 2009 при делении на 11 дает остаток 7. Следовательно уравнение не имеет решений в целых числах.
Пусть C — первая деталь окажется стандартной. Гипотезы:
H₁ - деталь изготовлена первым заводом;
H₂ - деталь изготовлена вторым заводом;
Вероятность события А по формуле полной вероятности
По формуле Байеса, вероятность того, что эта деталь изготовлена первым заводом, равна:
Аналогично, пусть В — вторая деталь окажется стандартной. Так как одна деталь уже вынута, то в партии остается 119 лампочек, из них 69 изготовлены на первом заводе.
По формуле полной вероятности, вероятность события В:
По формуле Байеса, вероятность того, что эта деталь изготовлена первым заводом, равна:
По теореме умножения, вероятность того, что наудачу взятые две лампочки являются стандартными, равна
По теореме умножения, вероятность того, что обе лампочки изготовлены на первом заводе, при условии что событие А произошло, равна:
Поделитесь своими знаниями, ответьте на вопрос:
Найти зн-ие выражения 5ac^2/a^2-9c^2*a-3c/ac при a=8, 3 c=-3, 6
а²-9с² ас (а-3с)(а+3с) 1 а+3с
= 5 * (-3,6) = -18 = -18 = 7,2
8,3+3*(-3,6) 8,3-10,8 -2,5