mberberoglu17
?>

Стригонометрией sin13°sin43°+sin47°cos13°

Алгебра

Ответы

koam20167459
sin13\cdot sin43+sin47\cdot cos13=sin13\cdot cos47+sin47\cdot cos13=\\\\=sin(13+47)=sin60=\frac{\sqrt3}{2}\\\\P.S.\; \; sin \alpha =cos(90- \alpha )\; \; \to \; \; sin43=cos47
Алексеевич949

Из первого неравенства находим:

x

R

или

x

- любое число.

Решим второе неравенство системы.

Решение второго неравенства системы

x

2

36

x

2

36

0

Решим квадратное уравнение  

x

2

36

=

0

Решение квадратного уравнения  

x

2

36

=

0

x

2

=

c

a

x

1

,

2

=

±

c

a

x

1

,

2

=

±

36

1

=

±

36

=

±

6

x

1

,

2

=

±

6

Корни квадратного уравнения:

x

1

=

6

;

x

2

=

6

Наносим найденные точки на числовую ось и вычисляем знаки на каждом интервале:

x

 

6

6

 

x

[

6

;

6

]

или

6

x

6

Из второго неравенства находим:

x

[

6

;

6

]

или

6

x

6

Т.к. первое неравенство верно при любом  

x

, то решение данной системы неравенств равно решению второго неравенства.

x

[

6

;

6

]

или

6

x

6

ninazholnerova9

В решении.

Объяснение:

3. Решите систему неравенств:

2х²+3х-5˃0

4х-5≥0

Решить первое неравенство:

2х² + 3х - 5 ˃ 0

Приравнять к нулю и решить квадратное уравнение:

2х² + 3х - 5 = 0

D=b²-4ac =9 + 40 = 49         √D=7

х₁=(-b-√D)/2a

х₁=(-3-7)/4

х₁= -10/4

х₁= -2,5;                

х₂=(-b+√D)/2a  

х₂=(-3+7)/4

х₂=4/4

х₂=1.

Уравнение квадратичной функции, график - парабола, ветви направлены вверх, парабола пересекает ось Ох в точках х = -2,5 и х= 1.  

Решение первого неравенства х∈(-∞; -2,5)∪(1; +∞).

Неравенство строгое, скобки круглые.

Решить второе неравенство:

4х - 5 ≥ 0

4х >= 5

x >= 5/4

x >= 1,25;

Решение второго неравенства х∈[1,25; +∞).

Неравенство нестрогое, скобка квадратная, а у знаков бесконечности скобки всегда круглые.

Теперь отметить решения неравенств на числовой оси и найти пересечение решений, то есть, решения, которые подойдут двум неравенствам.

Решение первого неравенства х∈(-∞; -2,5)∪(1; +∞).

Штриховка от - бесконечности до -2,5 и от 1 до + бесконечности.

Решение второго неравенства х∈[1,25; +∞).

Штриховка от 1,25 до + бесконечности.

  -∞                       -2,5                    1                        1,25                  +∞

Пересечение решений (двойная штриховка) х∈[1,25; +∞) - решение системы неравенств. На числовой прямой возле 1,25 кружочек закрашенный.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стригонометрией sin13°sin43°+sin47°cos13°
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Наталья286
vkurnosov20008
Anna-Miron
st-op767840
iptsr4968
ebelskaia
kyrtlab39
Lopatkin_Shchepak174
afilippov3321
Голосова-Лобанов1555
ltdfoliant62
tanya14757702
kulibabad566
Sin2x=tg60*sinx , cos2x*sin3x=cos2x
Astrians
mariyachervonnaya44