alexeylipatov
?>

9в 23 степени + 9в 22 степени +9в 21 степени разделить на 27в 14 степени - 27в 13 степени решение

Алгебра

Ответы

Anait_Natalya451
9^23+9^22+9^21 = 9^21(9^2+9+1)=91×3^42
27^!4-27^13= 27^13(27-1)= 26×3^39
(91×3^42)/(26×3^39) = 819/26 = 31.5
fakelel

Объяснение:

Первая труба наполняет бассейн за х часов,тогда за час - 1/х.

Вторая труба наполняет бассейн за (х+10) часов,тогда за час - 1/(х+10).

Вместе за час работы они наполнят бассейн (1/х)+ (1/(х+10)).

(1/х)+ (1/(х+10))= (х+10+х)/(х*(х+10))=(2х+10) / (х²+10х)

При совместной работе они наполняют бассейн за 12 часов:

1 ÷ (2х+10) / (х²+10х) = 12

1  *  (х²+10х) / (2х+10) = 12

(х²+10х) / (2х+10) = 12

12*(2х+10) =  х²+10х

24х+120-х²-10х=0

-х²+14х+120=0

х²-14х-120=0

х₁+х₂=14

х₁х₂= -120

х₁= -6 не подходит по условию

х₂=20 часов - первая труба наполняет бассейн.

20+10=30  часов - вторая труба наполняет бассейн.

Ермакова Ирина674

Объяснение:

Первая труба наполняет бассейн за х часов,тогда за час - 1/х.

Вторая труба наполняет бассейн за (х+10) часов,тогда за час - 1/(х+10).

Вместе за час работы они наполнят бассейн (1/х)+ (1/(х+10)).

(1/х)+ (1/(х+10))= (х+10+х)/(х*(х+10))=(2х+10) / (х²+10х)

При совместной работе они наполняют бассейн за 12 часов:

1 ÷ (2х+10) / (х²+10х) = 12

1  *  (х²+10х) / (2х+10) = 12

(х²+10х) / (2х+10) = 12

12*(2х+10) =  х²+10х

24х+120-х²-10х=0

-х²+14х+120=0

х²-14х-120=0

х₁+х₂=14

х₁х₂= -120

х₁= -6 не подходит по условию

х₂=20 часов - первая труба наполняет бассейн.

20+10=30  часов - вторая труба наполняет бассейн.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

9в 23 степени + 9в 22 степени +9в 21 степени разделить на 27в 14 степени - 27в 13 степени решение
Ваше имя (никнейм)*
Email*
Комментарий*