merzlikinairena
?>

Основания трапеции равны 18 и 12 , одна и боковых сторон равна 6 , а синус угла между ней и одним из оснований равен 1/3. найдите площадь трапеции

Алгебра

Ответы

anastasiavilina
AB=6
AD=18
BC=12
sinA=1/3
h=BE - ВЫСОТА
sinA=h/AB , h=ABsinA=6x1/3=2

S=((12+18)/2)×2=30
kizyaev6651
Весной
х-скорость течения,у-скорость катера собственная,у-х-скорость против течения,у+х-скорость по течению.
Летом
х-2-скорость течения,у-скорость катера собственная,у-х+2-скорость против течения,у+х-2-скорость по течению.
у+х=2 1/3(у-х)⇒х+2 1/3х=2 1/3у-у⇒3 1/3х=1 1/3у⇒х=4/3у : 10/3=4/3у*3/10=2/5у
у+х-2=1 4/7(у-х+2)⇒х+1 4/7х+у-1 4/7у=2+3 1/7⇒2 4/7х-4/7у=5 1/7
2 4/7*2/5у-4/7у=5 1/7
36/35у-4/7у=3 1/7
36/35у-20/35у=5 1/7
16/35у=5 1/7
у=5 1/7 : 16/35=36/7*35/16=45/4=11 1/4скорость катера собственная
x=11 1/4*2/5=45/4*2/5=4,5скорость течения весной
ganul

Объяснение:

y'+ycosx=sin2x

y'(x)+y(x)cos(x)=sin(2x)

dy(x)/dx +cos(x)y(x)=sin(2x)

Возьмем:

v(x)=e^∫cos(x)dx

v(x)=e^sin(x)

Теперь умножим обе стороны на v(x):

e^sin(x) •dy(x)/dx +e^sin(x) •cos(x) •y(x)=e^sin(x) •sin(2x)

Заменим e^sin(x) •cos(x)=d/dx •e^sin(x):

e^sin(x) •dy(x)/dx +d/dx •e^sin(x) •y(x)=e^sin(x) •sin(2x)

К левой стороне уравнения применим правило дифференцирования:

f•dg/dx +g•df/dx=d/dx •fg

d/dx •e^sin(x) •y(x)=e^sin(x) •sin(2x)

По отношению к х интегрируем обе стороны:

∫d/dx •e^sin(x) •y(x)•dx=∫e^sin(x) •sin(2x)•dx

e^sin(x) •y(x)=e^sin(x) •(2sin(x)-2)+c, где с - произвольная константа.

Делим обе стороны на v(x) и получаем ответ:

y(x)=2sin(x)+ce^-sin(x) -2

y'-3y/x=x

y'(x)-3y(x)/x=x

dy(x)/dx -3y(x)/x=x

Возьмем:

v(x)=e^∫-3/xdx

v(x)=1/x^3

Теперь умножим обе стороны на v(x):

(dy(x)/dx)/x^3 -3y(x)/x^4=1/x^2

Заменим -3/x^4=d/dx •1/x^3:

(dy(x)/dx)/x^3 +d/dx •1/x^3 •y(x)=1/x^2

К левой стороне уравнения применим правило дифференцирования:

f•dg/dx +g•df/dx=d/dx •fg

d/dx •y(x)/x^3=1/x^2

По отношению к х интегрируем обе стороны:

∫d/dx •y(x)/x^3 •dx=∫1/x^2 •dx

y(x)/x^3= -1/x +c, где с - произвольная константа.

Делим обе стороны на v(x) и получаем ответ:

y(x)=x^2 •(cx-1)

y'- y/(2x+1)=e^3x √(2x+1)

y'(x)- y(x)/(2x+1)=e^3x √(2x+1)

Возьмем:

v(x)=e^∫-1/(2x+1)dx

v(x)=1/√(-2x-1)

Теперь умножим обе стороны на v(x):

(dy(x)/dx)/√(-2x-1) -y(x)/(√(-2x-1) •(2x+1))=e^3x √(2x+1)/√(-2x-1)

Заменим -1/(√(-2x-1) •(2x+1))=d/dx •1/√(-2x-1):

(dy(x)/dx)/√(-2x-1) +d/dx •1/√(-2x-1) •y(x)=e^3x √(2x+1)/√(-2x-1)

К левой стороне уравнения применим правило дифференцирования:

f•dg/dx +g•df/dx=d/dx •fg

d/dx •y(x)/√(-2x-1)=e^3x √(2x+1)/√(-2x-1)

По отношению к х интегрируем обе стороны:

∫d/dx •y(x)/√(-2x-1) •dx=∫e^3x √(2x+1)/√(-2x-1) •dx

y(x)/√(-2x-1)=e^3x √(2x+1)/(3√(-2x-1)) +c, где с - произвольная константа.

Делим обе стороны на v(x) и получаем ответ:

y(x)=1/3 •e^3x √(2x+1) +c√(-2x-1)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Основания трапеции равны 18 и 12 , одна и боковых сторон равна 6 , а синус угла между ней и одним из оснований равен 1/3. найдите площадь трапеции
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

bondarev05071962
zubov-073620
Кожуховский398
artemyanovich8
ukkavtodor6
zbellatriks
brendacepedam
Александровна1685
artem-whitenoise142
universal21vek116
Blekjek730
turovvlad
N-odes-art-school410
Ladiga_Evgenii886
bochkarevazh