knyazev527
?>

Решить уравнение 2(x-1)-7=5x-5 выражение 3(m-2)^2+12m

Алгебра

Ответы

o-pavlova-8635
1.2(х-1)-7=5х-5
Раскрываем скобочки: 2x-2-7-5x+5=0
-3x=-4
x=4/3
2.3(m-2)^2+12m= 3(m^2-4m+4)+12m= 3m^2-12m+12+12m= 3m^2+12= 3(m^2+4) 
yulyazhdan
Итак , по условию нам нужно решить уравнение и выписать меньший из корней в ответ
Перейдем непосредственно к решению:
(-5x-3)(2x-1)=0
Перемножив получим:
-10x^2+5x-6x+3=0
Выполним возможное упрощение и получим: 
-10x^2-x+3=0
D=b^2-4ac=1+120=121
x1=(-b+√D)/2a=(1+11)/-20=12/-20=-0,6
x2=(-b-√D)2a=(1-11)/-20=10/-20=-0,5
А вот теперь поломаем голову, -0.5 будет большим корнем , но к нулю будет он ближе , но -0.6 меньший корень , но к нулю он дальше , но именно -0.6 нам и нужно записать в ответ как меньший корень
toxicfish

Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.

Знаходження похідної:

f'(x) = d/dx (2x - x²)= 2 - 2x

Знаходимо точки екстремуму:

f'(x) = 02 - 2x = 02x = 2x = 1

Таким чином, точка екстремуму x = 1.

Досліджуємо знак похідної та визначаємо проміжки монотонності:

3.1. Розглянемо інтервал (-∞, 1):

Для x < 1:

f'(x) = 2 - 2x < 0 (знак "менше нуля")

Таким чином, на цьому інтервалі функція f(x) спадає.

3.2. Розглянемо інтервал (1, +∞):

Для x > 1:

f'(x) = 2 - 2x > 0 (знак "більше нуля")

Таким чином, на цьому інтервалі функція f(x) зростає.

Знаходимо значення функції f(x) у точці екстремуму:

f(1) = 2(1) - (1)²= 2 - 1= 1

Таким чином, екстремум функції f(x) в точці (1, 1).

Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:

Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить уравнение 2(x-1)-7=5x-5 выражение 3(m-2)^2+12m
Ваше имя (никнейм)*
Email*
Комментарий*