Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
Поделитесь своими знаниями, ответьте на вопрос:
Принадлежит ли число 10 области значений функции у=корень квадратный из х^2-2x+12. ) если можно то с
y=10
√(x²-2x+12)=10
x²-2x+12=100
x²-2x+12-100=0
x²-2x-88=0
D=4+4*88=4+352=356=(2√89)²
x₁=2-2√89=1-√89
2
x₂=1+√89
Проверка корней:
х=1-√89 √((1-√89)²-2(1-√89)+12)=10
√(1-2√89+89-2+2√89+12)=10
√100=10
10=10
х=1+√89 √((1+√89)²-2(1+√89)+12)=10
√(1+2√89+89-2-2√89+12)=10
√100=10
10=10
Так как существуют такие х₁=1-√89 и х₂=1+√89, где у=10, то число 10 принадлежит области значений функции.
10∈Е(у)