6,25 см Это радиус описанной окружности.
Объяснение:
центр описанной окружности лежиит на пересечении серединных перпендикуляров. Боковые стороны 10 а половина основания 6. Значит по терореме Пифавгора высота из вершины равнобедренного треугольника равна 8 см. Строим серединный перпендикуляр к боковой стороне.Обозначим радиус через Х. Тогда отрезок серединного перпендикуляра до центра окружности будет 8-Х А сам треугольник ,образованный радиусом(Х), расстоянием от центра до основания (8-Х) и половиной основания(6) решаем по теореме Пифагора.
Х² = 64 -16Х+Х² +36
16Х=100
Х=6,25 см Это радиус описанной окружности.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите интервалы монотонности и точки экстремума y=x^3 - 3x^2 +3x-9
а) нули функции: х = -1, х = 7;
б) промежутки, на которых функции возрастает и убывает:
от - ∞ до х = 3 убывает и на участке от х = 3 до + ∞ возрастает;
в) промежутки, на которых функция принимает положительные и отрицательные значения:
- функция положительная на участке от - ∞ до х = -1 и на участке от х = 7 до +∞;
- функция отрицательная на промежутке между нулями функции от х = -1 до х = 7;
г) наименьшее значение функции у = -16.
Объяснение:
1) Уравнение функции является приведённым.
Находим его корни:
х1,2 = +3 ± √ 9 -(-7) = 3 ± 4.
х1 = 7,
х2 = -1.
Проверяем полученные корни:
7 * (-1) = - 7 - равно свободному члену;
7 - 1 = 6 - равно второму коэффициенту, взятому с противоположным знаком.
Корни найдены верно.
Таким образом, нули функции:
х = -1 и х = 7.
2) Это значит, что график функции у = х2 – 6х – 7 пересекает ось х в точках х = -1 и х = 7.
3) Графиком данном функции является парабола (т.к. х^2), ветви которой направлены вверх (коэффициент при х^2 - положительный, а именно: +1), это значит, что:
- на участке от - ∞ до х = -1 - функция положительная;
- на промежутке между нулями функции от х = -1 до х = 7 - отрицательная;
- на участке от х = 7 до +∞ - положительная.
4) Наименьшим значением данной функции является координата y вершины параболы.
Координаты вершины параболы:
х = - b/2a = 6/2 = 3
y = c - b^2/4a = - 7 - (-6)^2/4 = - 7 - 9 = - 16.
Проверим полученные значения, для чего в первоначальное уравнение подставим вместо х его значение:
у = х2 – 6х – 7 = 3*3 - 6*3 - 7 = 9 - 18 - 7 = - 16; сходится с расчетом; значит, координаты вершины параболы найдены верно.
Поэтому есть все основания ответить на последние вопросы.
5) Функция убывает на участке от - ∞ до х = 3 и возрастает на участке от х = 3 до + ∞.
6) Наименьшее значение функции:
y = -16.
а) нули функции: х = -1, х = 7;
б) промежутки, на которых функции возрастает и убывает:
от - ∞ до х = 3 убывает и на участке от х = 3 до + ∞ возрастает;
в) промежутки, на которых функция принимает положительные и отрицательные значения:
- функция положительная на участке от - ∞ до х = -1 и на участке от х = 7 до +∞;
- функция отрицательная на промежутке между нулями функции от х = -1 до х = 7;
г) наименьшее значение функции у = -16.