1. -35x^6y^2+zx^3y^3+21x^2y^5
2. (-6x^2+9x^3)(3x^2+11x)=-18x^4-66x^3+27x^5+99x^4
3. (x+2)(x-5)-3x(1-2x)=x^2-5x+2x-10-3x+6x^2=7x^2-6x^2+10
(a+3)(a-2)+(a-3)(a+6)=a^2-2a+3a-6+a^2+6a-3a=2a^2+4a-6
(x-7)(3x-2)-(5x+1)(2x-4)=3x^2-2x-21x+14-10x^2+20x-2x+4=-7x^2-5x+18
(5x-2y)(3x+5y)-(2,5x-3y)(4x+8y)=15x^2+25xy-6xy-10y^2-10x^2-40xy+12xy+24y^2=5x^2+14y^2-11xy
(b+6)(b-6)-3b(b+2)=b^2-6b+6b-36-3b^2-6b=-2b^2-6b-36
(3a-2)(3a+2)+(a-8)(a+8)=9a^2+6a-6a-4+a^2+8a-8a-64=10a^2-4
(5x-3y)(5x+3y)+(a-8)(a+8)=25x^2+15xy-15xy-9y^2+a^2+8a-8a-64=25x^2-9y^2+a^2-64
(c-2)(3-c)-(5-c)(5+c)=3c-c^2-6+2c-25-5c+5c+c^2=5c-31
4.По аналогии с 3 - открываешь скобки и решаешь простое уравнение.
5. x^2-4x+3=x^2-x-3x+3=x(x-1)-3(x-1)=(x-3)(x-1)
6. 16^4-2^10 кратно 7 тогда, когда разница основ и сумма степеней кратна 7(делиться без остатка)
(16-2)/7=2
(10+4)/7=2, доказано .
все остальное по аналогии, удачи))
Система уравнений имеет два решения:
1)[(1-2√3/2 (≈ -1,5); 7-4√3/2 (≈2,1)];
2)[1+2√3/2 (≈3,5); 7+4√3/2 (≈11,9)].
Объяснение:
Определите графически количество решение системы уравнений:
y=x²
y-2x-5=0
Преобразуем второе уравнение в уравнение функции:
y-2x-5=0
у=2х+5
Построим графики функций. Первый - парабола с вершиной в начале координат, ветви направлены вверх; второй - прямая линия.
Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
y=x² у=2х+5
Таблицы:
х -3 -2 -1 0 1 2 3 х -1 0 1
у 9 4 1 0 1 4 9 у 3 5 7
На графике прямая у=2х+5 пересекает параболу в двух точках, но значения очень приблизительные.
Определим координаты этих точек расчётами.
Приравняем правые части уравнений (левые равны) и вычислим х:
x²=2х+5
x²-2х-5=0, квадратное уравнение, ищем корни:
х₁,₂=(2±√4+20)/2
х₁,₂=(2±√24)/2
х₁,₂=(2±√16*3/2)/2
х₁,₂=(2±4√3/2)/2
х₁=1-2√3/2 (≈ -1,5)
х₂=1+2√3/2 (≈3,5)
Вычислим значения у координат точек пересечения:
у=2х+5
у₁=2(1-2√3/2)+5
у₁=2-4√3/2+5
у₁=7-4√3/2 (≈2,1)
у₂=2(1+2√3/2)+5
у₂=2+4√3/2+5
у₂=7+4√3/2 (≈11,9)
Координаты первой точки пересечения графиков: [(1-2√3/2 (≈ -1,5); 7-4√3/2 (≈2,1)];
Координаты второй точки пересечения графиков: [1+2√3/2 (≈3,5); 7+4√3/2 (≈11,9)]
Поделитесь своими знаниями, ответьте на вопрос: