Это задача на арифметическую прогрессию, в которой a_1=5a
1
=5 , S_{13}=221S
13
=221 . Составим уравнение суммы 13 членов, используя известные нам значения:
\begin{gathered}S_{n}=\dfrac{a_1+d(n-1)}{2} \cdot n\\S_{13}=\dfrac{5+12d}{2} \cdot 13=221\\\dfrac{5+12d}{2}=17\\5+12d=34\\12d=29\\d=\dfrac{29}{12}\end{gathered}
S
n
=
2
a
1
+d(n−1)
⋅n
S
13
=
2
5+12d
⋅13=221
2
5+12d
=17
5+12d=34
12d=29
d=
12
29
Найдём 13-й член по стандартной формуле:
\begin{gathered}a_n=a_1+d(n-1)\\a_{13}=5+\dfrac{29}{12} \cdot 12=5+29=34\end{gathered}
a
n
=a
1
+d(n−1)
a
13
=5+
12
29
⋅12=5+29=34
Пусть х км/ч - собственная скорость лодки, тогда (х + 3) км/ч - скорость лодки по течению реки, (х - 3) км/ч - скорость лодки против течения реки. На путь туда и обратно затрачено 9 часов. Уравнение:
36/(х+3) + 36/(х-3) = 9
36 · (х - 3) + 36 (х + 3) = 9 · (х - 3) · (х + 3)
36х - 108 + 36х + 108 = 9 · (х² - 3²)
36х + 36х = 9х² - 81
72х = 9х² - 81
9х² - 72х - 81 = 0
Разделим обе части уравнения на 9
х² - 8х - 9 = 0
D = b² - 4ac = (-8)² - 4 · 1 · (-9) = 64 + 36 = 100
√D = √100 = 10
х₁ = (8-10)/(2·1) = (-2)/2 = -1 (не подходит, так как < 0)
х₂ = (8+10)/(2·1) = 18/2 = 9
ответ: 9 км/ч - собственная скорость лодки.
Проверка:
36 : (9 + 3) = 36 : 12 = 3 ч - по течению
36 : (9 - 3) = 36 : 6 = 6 ч - против течения
3 ч + 6 ч = 9 ч - туда и обратно
Поделитесь своими знаниями, ответьте на вопрос:
Уравнение ; 2x2-x(2x-5)-2(2x-1)-5=0