Анатолий
?>

1)3x^2+4x−207=0 (решите ур) 2)-5(целых)2\3x=1(целой)5\12 (решите ур)

Алгебра

Ответы

Наталья286
1) 3x²+4x-207=0      D=2500
 x₁=23/3  x₂=-9         
2) -5(2/3)x=1(5/12)
(-17/3)x=17/12
x=-1/4.
myatadinamo
1) 
3x^2+4x-207=0 \\ D=16-4*3*(-207)=16+2484=2500 \\ \\ x_1= \frac{-4+50}{6} = \frac{46}{6} = \frac{23}{3} =7 \frac{2}{3} \\ \\ x_2= \frac{-4-50}{6} = \frac{-54}{6} =-9

ответ:-9;7 \frac{2}{3}

2)
-5 \frac{2}{3} x=1 \frac{5}{12} \\ \\ - \frac{17x}{3} = \frac{17}{12} \\ \\ -17x*12=17*3 \\ -x*12=3 \\ \\ -x= \frac{3}{12} \\ \\ -x= \frac{1}{4} \\ x=-0,25

ответ: -0,25
pravovoimeridian

Объяснение:

1)(2a - 5b)·(... - ...) = 6a^3 - 15a^2*b - 14ab + ...;

6a^3 : 2a = 3a^2

14ab : 2a = 7b

(2a - 5b)(3a^2 - 7b) = 6a^3 - 15a^2*b - 14ab + 35b^2

2)(... - ...)·(6x^2 - 5y^2) = 12x^3 + 42x^2*y - ... - 35y^3;

12x^3 : 6x^2 = 2x

-35y^3 : (-5y^2) = 7y

(2x + 7y)(6x^2 - 5y^2) = 12x^3 + 42x^2*y - 10xy^2 - 35y^3

3)(3a + 4c)·(... + ...) = 20ac + 8bc + 6ab + ...;

20ac : 4c = 5a

6ab : 3a = 2b

(3a + 4c)(5a + 2b) = 20ac + 8bc + 6ab + 15a^2

4)(... + ...)·(2a + 5b) = ... + 5ab + 8ac + 20b

Здесь опечатка, в конце должно быть 20bc

5ab : 5b = a

8ac : 2a = 4c

(a + 4c)(2a + 5b) = 2a^2 + 5ab + 8ac + 20bc

lavorenn

y=\begin{cases}x^2-8x+14,\ \ x\geq 3\\x-2,\qquad\quad\quad x

y=x^2-8x+14;\quad x\geq 3

Найдём  вершину параболы:

x_0=\dfrac{-b}{2a}=\dfrac82=4;\qquad \quad y_0=y(x_0)=4^2-8\cdot4+14=16-32+14=-2

В данной точке можно обозначить опорную прямую, которая будет симметрична для ветвей (тогда значения с одной стороны можно просто симметрично перенести на другую)

Возьмём 3 точки (при ограничении прямой x < 3 даже 3-ёх много будет)

1)  x = 5

y=5^2-8\cdot5+14=25-40+14=-1

2)  x = 6

y=6^2-8\cdot6+14=36-48+14=2

3)  x = 7

y=7^2-8\cdot7+14=49-56+14=7

\begin{array}{ccc}x\\y\end{array}\begin{array}{ccc}5&6&7\\-1&2&7\end{array}

Отмечаем точки на координатной плоскости и симметрично их копируем относительно вс прямой

Не стоит забывать что условие ограничения функции x ≥ 3, поэтому переносим только точку, симметричную B; позже на графике эта точка будет закрашена и обозначена как A

(картинка 1)

Разбираемся со вторым графиком

y=x-2

Уравнение прямой, достаточно двух точек

\begin{array}{ccc}x&1&2\\y&-1&0\end{array}

Условие  x < 3, точка (3; 1) выколота

(картинка 2)

y = m

При  m = 1  (и всё что выше) получаем 1 точку пересечения

Следовательно, подходят все значения до m = 1

При  m = -1  и до  m = -2  имеем 3 точки пересечения

При m = -2  2 точки пересечения (вершина параболы и прямая)

Следовательно нам подходят значения -2;  от  -1 до  1 не включительно

ответ:  m\in(-1;\ 1)\cup\{-2\}


Нужно очень подробное решение!
Нужно очень подробное решение!

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1)3x^2+4x−207=0 (решите ур) 2)-5(целых)2\3x=1(целой)5\12 (решите ур)
Ваше имя (никнейм)*
Email*
Комментарий*