Замечаем, что при х=1
1+1-4-2+4=0
0=0 - верно, значит х=1 является корнем уравнения и можно разложить левую часть на множители, один из которых уже известен - это (х-1).
x⁴+x³-4x²-2x+4=(x-1)(x³+ax²+bx+c)
Наша задача найти коэффициенты а,b и с.
Раскроем скобки справа
x⁴+x³-4x²-2x+4=x⁴+ax³+bx²+cx-x³-ax²-bx-c;
x⁴+x³-4x²-2x+4=x⁴+(a-1)x³+(b-a)x²+(c-b)x-c;
Два многочлена равны, если степени этих многочленов одинаковые, и коэффициенты при соответствующих степенях равны.
a-1=1 ⇒ a=2
b-a=-4 ⇒ b=a-4=2-4=-2
c-b=-2 ⇒ c=b-2=-2-2=-4
-c=4 ⇒ c=-4
Поэтому
x⁴+x³-4x²-2x+4=(x-1)(x³+2x²-2x-4)
Уравнение принимает вид:
(x-1)(x³+2x²-2x-4)=0
х-1=0 или x³+2x²-2x-4=0
х=1 х²(х+2)-2(х+2)=0
(х+2)(х²-2)=0
х+2=0 или х²-2=0
х=-2 х=-√2; х=√2
О т в е т. -2; -√2; 1; √2 - корни уравнения
Можно было получить многочлен х³+ax²+bx+c поделив многочлен
на двучлен (х-1) " углом"
_x⁴ + x³ - 4x² - 2x + 4 |x-1
x⁴ - x³ x³+2x²-2x-4
_2x³ - 4x² - 2x + 4
2x³ -2x²
_-2x² - 2x + 4
-2x² + 2x
_- 4x + 4
- 4x + 4
0
Объяснение:
16. 4/11 ÷(-16/33)+5 3/4=4/11 ·(-33/16)+5 3/4=-3/4 +5 3/4=5
17. (4 3/8 -11/5) ÷3/10=(4 15/40 -2 8/40)·10/3=2 7/40 ·10/3=87/40 ·10/3=29/4=7 1/4=7,25
18. (11/12 +11/20)·15/8=(55/60 +33/60)·15/8=88/60 ·15/8=11/4=2 3/4=2,75
19. (3,1+3,4)·3,8=6,5·3,8=13/2 ·19/5=247/10=24,7
20. 2,7/(1,4+0,1)=27/15=9/5=1,8
21. 8,5·2,6-1,7=17/2 ·13/5 -1,7=221/10 -1,7=22,1-1,7=20,4
22. 9,4/(4,1+5,3)=94/94=1
23. 3,8/(2,6+1,2)=38/38=1
24. 18/4 ·14/3 ÷4/5=9/2 ·14/3 ·5/4=3·7·5/4=(21·5)/4=105/4=26 1/4=26,25
25. (432²-568²)÷1000=((432-568)(432+568))/1000=(-136+1000)/1000=864/1000=0,864
Поделитесь своими знаниями, ответьте на вопрос:
Cos квадрат x+4cosx= 3sin квадрат x
замена cosx=t /t /≤1
D=16+48=64
t1=1/2
t2= - 1.5
cosx=1/2
x=±, n∈Z