а)
Дано: y = -x³ + 3*x+3
y'(x) = -3*x² + 3 = -3*(x²-1) = - 3*(x-1)*(x+1)= 0 - первая производная.
Корни: х1 = - 1 и х2 = 1 - точки экстремумов.
Вычисляем.
1) x = -1 ⇒ ymin = 1 , x = 1 ⇒ ymax = 5 - ответ
2) x = 1 ⇒ ymax = 5, x = 3 ⇒ ymin = -15 - ответ
3) x = -1 ⇒ ymax = 1 , x = 3 ⇒ ymin = -15 - ответ
рисунок с графиком .
b) Дано: y = 1/3*x³ - 2.5*x² + 6*x +10
y'(x) = x² - 5x + 6 = (х-2)*(х-3) = 0 - находим корни.
х1 = 2, х2 = 3
1) ymin(0) = 10 ymax(1) = 13 5/6 - ответ
2) ymin(0) = 10 ymax(2,5) = 14 3/5 - ответ
3) ymin(0) = 10 ymax(4) = 15 1/3 - ответ
Рисунок с графиком.
с) Дано: y = x⁴ - 8*x² - 9
y'(x) = 4*x³ - 16*x = 4*x*(x-2)*(x+2) = 0
Экстремумы в точках? х1 = - 2, х2 = 0 , х3 = 2.
) ymin(-1) = -16 ymax(0) = -9 - ответ
2) ymin(0) = -9 ymax(3) = 0 - ответ
3) ymin(3) = 0 ymax(5) = 416 - ответ
Рисунок с графиком.
Пусть объём бассейна равен 1, тогда время его заполнения до ремонта первым насосом – x, а вторым – y часов. Значит, 1/x - производительность первого насоса до ремонта, а 1/y - производительность второго насоса до ремонта. Зная, что бассейн до ремонта насосов заполняется за 8 часов, то составим первое уравнение: 8(1/x+1/y)=1
1,2(1/x) - производительность первого насоса до ремонта, а 1,6(1/y) - производительность второго насоса после ремонта. Зная, что бассейн после ремонта насосов заполняется за 6 часов, то составим второе уравнение: 6(12/x+16/y)=1.
Решив совместно эти два уравнения , получаем : x=12, y=24.
Из найденных значений для x и y вычислим производительность первого насоса после ремонта: 1,2(1/x)=(1,2*1)/12=0,1
По формуле t=A/P найдём время наполнения бассейна при работе только первого насоса после ремонта: 1/0,1=10 ч.
ответ: 10 ч.
Поставь лучший ответ
Поделитесь своими знаниями, ответьте на вопрос:
Решить! цену ткани повысили сначала на 20%, а затем новую цену повысили еще на 25%.на сколько процентов была повышена в результате новая цена товара?
х+0,2х+0,25(х+0,2х) после второго повышения
решим это выражение: = 1,2х+0,25+0,05х=1,5х
т.е. повышение в общем составило 0,5х=50%
ответ: на 50%