elenak26038778
?>

Может ли из 101 идущих подряд натуральных чисел быть ровно одно делящееся на 50

Алгебра

Ответы

Елизавета Александр2011
Не может, должно быть минимум два. Можно привести строгое математическое доказательство, но можно просто логически подумать. С какого бы Вы числа х не начали (например, х = 73), у вас получится ряд, начинающийся с х и заканчивающийся (х + 100). В этом ряду как минимум дважды найдётся число, делящееся на 50. В нашем примере ряд от 73 до 173, и так есть два числа (100 и 150), делящиеся на 50.
klkkan
А) q=12/-3=-4
б) c3=c2*q=12*(-4)=-48
в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n
г) c6=3/4*(-4)^6=3*4^5=3*1024=3072
д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей.
e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4
ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии. 

 
smnra219
Проще всего решить это уравнение графическим
arctan(x/5)-arctan(x/7) представляет собой график арктангенса, из которого вычели график арктангенса с меньшим аргументом. Это очень похоже на тот же арктангенс, который идет вдоль оси абсцисс. Но главное тут, это то, что оба арктангенса проходят через общую точку 0! И получается, при вычитании, 0-0...т.е. результирующий график проходит также через 0. С другой стороны, arctan(x) также проходит через 0 и больше полученную в левой части уравнения кривую не пересекает. Т.е. ответ x = 0

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Может ли из 101 идущих подряд натуральных чисел быть ровно одно делящееся на 50
Ваше имя (никнейм)*
Email*
Комментарий*