ekatef45
?>

Выполните вычитание: 8 1/25 - 7 4/5

Алгебра

Ответы

ramco1972
8 1/25 - 7 4/5 (домножаем на 5)

8 1/25 - 7 20/25 = 8 - 7 19/25 = 6/25
premiumoft
8 1/25 - 7 4/5 = 201/25 - 39/5 = ( 201 - 195) / 25 = 6/25
rodsher7740

решение достаточное легкое, прикрепляю фото, но еще и объясню на словах, чтобы было понятнее. На фото более краткий разбор, нужно только оформить, а этот текст просто чтобы понять что к чему и не запутаться)

Нам дан равнобедренный треугольник АВС, мы проводим высоту ВК, которая равна 67. Она отделяет два прямоугольных треугольника АВК и ВКС, тк нам нужно найти АВ, то мы будем рассматривать треугольник АВК. Угол АВК будет равен половине угла АВС, тк высота ВК делит угол В пополам. 120:2= 60. Угол ВКА равен 90 градусов, тк Вк высота. Сумма всех углов треугольника равна 180. складываем известные нам углы в треугольнике АВК, сумма которых равно 150. 180-150=30, делаем вывод что угол ВАК = 30 градусов. По свойству прямоугольного треугольника (Катет, лежащий против угла 30градусов, равен половине гипотенузы.) делаем вывод, что ВК равен половине АВ (ВК - катет, лежит напротив угла 30 гр, АВ - гипотенуза). Следовательно, гипотенуза АВ=2ВК. 67*2=134.

АВ=134.


В равнобедренном треугольнике ABC угол ABC равен 120°. Высота BK, проведённая к основанию, равна 67.
serov555zaq5

\[\frac{sin x}{4} * \frac{cos x}{4} = 0\]

Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:  

 \[\frac{sin x * cos x}{16}  = 0\]

Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):

 \[2sin x * cos x  = 0\]

По формулам тригонометрии мы знаем, что:  

 \[2sin x * cos x  = sin 2x\]

Запишем наше красивое уравнение:  

 \[sin 2x = 0\]

А теперь его решим.

Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:  

 \[sin x = a\]

 

 \[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:  

 \[sin 2x = 0\]

Но у нас будет не просто х, а двойной:  

 \[2x =  (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]

Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0

Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:  

 \[sin 2x = 0 \]

 

 \[2x = \pi k, k \in \mathbb{Z}\]

Чтоб найти х надо каждый член поделить на два и из этого получим следующее:

 \[x = \frac{\pi k}{2}, k \in \mathbb{Z}\]

ответ: x = \frac{\pi k}{2}, k \in \mathbb{Z}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выполните вычитание: 8 1/25 - 7 4/5
Ваше имя (никнейм)*
Email*
Комментарий*