Решение: Обозначим скорость первого автомобилиста за (х) км/час, а полный путь автомобилиста за единицу (1) пути, тогда время в пути первого автомобилиста составило: 1/х (час) Второй автомобилист проехал первую половину пути за (1/2:55) часа, вторую половину пути второй автомобилист двигался со скоростью (х+6) км/час и проехал вторую половину пути за {1/2:(х+6)} часа А так как автомобилисты приехали в город В одновременно, то есть потратили одинаковое количество времени в пути, составим уравнение: 1/х=(1/2:55)+{1/2:(х+6)} 1/х=1/110+1/(2х+12) 110*(2х+12)=х*(2х+12)*1+х*110*1 220х+1320=2x^2+12x+110x 2x^2+12x+110x-220x-1320=0 2x^2-98x-1320=0 x1,2=(98+-D)/2*2 D=√(9604-4*2*-1320)=√(9604+10560)=√20164=142 х1,2=(98+-142)/4 х1=(98+142)/4=240/4=60 (км/час) - скорость первого автомобилиста х2=(98-142)/4=-44/4=11 - не соответствует условию задачи
ответ: Скорость первого автомобилиста равна 60 км/час
okunevo2010
15.07.2020
N = n*k+0,75*4*n= n* (k+3) Для начала мы знаем, что все обычные места (не откидные) заняты. Чтобы вычислить кол-во людей на них, надо умножить кол-во рядов (n) на кол-во кресел в каждом (K) Теперь откидные кресла. Так как осталось 25 % свободно,занято 100-25=75%. Чтобы проценты перевести в числовой эквивалент, надо 75 разделить на 100, получим 0,75 Всего откидных кресел 4 (в каждом ряду) умноженное на кол-во рядов, то есть на все те же N. Итого у нас занято откидных кресел 0,75*4*n Складываем зрителей на обычных и откидных креслах, выносим общий множитель (n) за скобки и производим умнижение известных чисел (0,75*4=3) В итоге получаем N = n* (k+3)