ietishkin
?>

Всем ) ! ) нужно решить уравнение sin^{3}x + cos^{3} = 0

Алгебра

Ответы

sse1105
Надо обе части уравнения разделить на cos^{3}х:
\frac{sin^3x}{cos^3x} + \frac{cos^3x}{cos^3x}=0
tg^3x+1=0
tg^3x=-1
tg x= \sqrt[3]{-1} =-1
x=Arc tg(-1)=- \frac{ \pi }{4} + \pi k  k∈Z
Борисовна

1) a) 4+12x+9x2

      4+12x+18

      22+12x

      2(11+6x)

 б)  25-40х+16х2

      25-40х+32

      57-40х

 г)  -56а+49а*2+16

      -56а+98а+16

       42а+16

       2(21а+8)

2)  a)  (y-1)(y+1)    б) p^2-9    г) (3x-2)(3x+2)    д) (3x)^2-2^2   е) a^2-3^2

         y^2-1                              (3x)^2-2^2           9x^2-4            a^2-9

   в) 4^2-(5y^2)                       9x^2-4

       16-25y^2

4)  a) a3-b3      б)  27a3+8b3

      3(a-b)             81a+24b

                             3(27a+8b)

mmihail146
1) Положим что 7 это один из катетов, тогда 5 либо второй катет (высота) или высота проведенная к гипотенузе, пусть 5 это высота к гипотенузе и b второй катет, тогда высота равна 7b/√(b^2+49)=5 , откуда b=35/√24 то есть  такой катет существует, значит для первого случая возможны два варианта , это треугольники (катет,катет,гипотенуза)=(5,7,√74)  и (7,35/√24,49/√24)  
 
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к  гипотенузе, пусть a,b тогда катеты , откуда  ab/7=5 и a^2+b^2=49 
ab=35 
a^2+b^2=49 

a=35/b  
откуда  b^4-49b^2+1225=0   
 D<0 
то есть не существует такого треугольника 

 Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Всем ) ! ) нужно решить уравнение sin^{3}x + cos^{3} = 0
Ваше имя (никнейм)*
Email*
Комментарий*