Это означает найти все возможные корни уравнения или установить, что их нет вовсе. бывает такое, что уравнение не дает корни
kzhgutova
01.05.2022
1) Область определения { x^2 - 1 > 0 { log(1/2) (x^2 - 1) > 0 Функция y = log(1/2) (x) - убывающая, поэтому { (x + 1)(x - 1) > 0 { x^2 - 1 > 1; x^2 - 2 > 0 Получаем { x< -1 U x > 1 { x < -√2 U x > √2 Область: x < -√2 U x > √2 2) Решаем неравенство Функция y = log3 (x) - возрастающая, поэтому log3 (log(1/2) (x^2 - 1)) < 1 = log3 (3) log(1/2) (x^2 - 1) < 3 = log(1/2) (1/8) Функция y = log(1/2) (x) - убывающая, поэтому x^2 - 1 > 1/8 x^2 > 1 + 1/8 = 9/8 |x| > 3/√8 ~ 1,06 < √2 ответ: x < -√2 U x > √2 Неравенство вообще не имеет значения, все определяет область определения, простите за тавтологию.
yda659
01.05.2022
ФСУ (формула сокращённого умножения) (а+б)^2 = а^2+2аб+ б^2 (а+б)(а-б)= а^2-б^2 (х+4)*(х-4)-(х+12)^2 1 действие: (х+4)(х-4), сокращаем по ФСУ (а-б)(а+б) получается (х+4)(х-4)=х^2-4^2=х^2-16 2 действие: -(х+12)^2, если перед скобкой стоит знак минус, все внутри скобки меняется на другой знак (-х-12)^2, далее сокращаем по фсу (-х+12)^2= -х^2-24х-144 3 действие: х^2-16-х^2-24х-144, х^2 и -х^2 самоуничтожаются, у нас остаётся -16-24х-144, -16-144-24х=-160-24х если кратко, то (х-4)(х+4)-(х+12)^2=х^2-16-х^2-24х-144=-16-24х-144=-160-24х